scholarly journals Eigen-Analysis Considering Time-Delay and Data-Loss of WAMS and ITS Application to WADC Design Based on Damping Torque Analysis

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3186 ◽  
Author(s):  
Tao Zhou ◽  
Zhong Chen ◽  
Siqi Bu ◽  
Haoran Tang ◽  
Yi Liu

Data-loss from wide-area measurement systems (WAMS) is a stochastic event and eigenvalues of power systems containing data-loss cannot be calculated directly. This paper proposes a unified model of WAMS data containing time-delay and data-loss according to its mathematical expectation. Based on Pade approximation, the model is incorporated into a system linearized model with WAMS. Thus, an eigen-analysis can be conducted to analyze the impacts of data corruption and to calculate the system stability time-delay margin. Then, the unified model is applied to damping torque analysis (DTA) to derive the damping torque index (DTI) with WAMS. The DTI can be used to select feedback signals and conduct the parameter design of a wide-area damping controller (WADC). Finally, the 2-area 4-machine (2A4M) Kundur system and Eastern China power grid (ECPG) are simulated to validate the feasibility of the model and its application. The results demonstrate the impacts of data corruption on system dynamic performance and the ability of the method to improve the small-signal stability of interconnected power grids.

2012 ◽  
Vol 433-440 ◽  
pp. 7362-7367
Author(s):  
Zhang Lin ◽  
Di Chen Liu ◽  
Wu Jun ◽  
Qing Fen Liao ◽  
Yun Lei ◽  
...  

It is very important to take into consideration time delay in wide area power system stability; the design of PSS (Power System Stabilizer) should consider global optimization with WAMS (Wide Area Measurement System) time delay. Newly designed PSS should be insensitive to time delay and suppress internal low frequency oscillations. It is used as feedback signal and is real-time synchronous that WAMS signal shows. Power system is modeled with the consideration of time delay. LMI (Linear Matrix Inequalities) is used to solve the stability condition of time delay system. Based on the time-delay effect of the wide-area measurement signals, this paper redesigned the PSS with global optimization of power system. The attached two-area-four-machine system simulation illustrates that wide-area PSS designed by global optimization with the consideration of time-delay can limit internal low frequency oscillation with time-delay insensitivity, and improve the stability of power system. It implements global optimization of PSS with WAMS time delay stability.


In this paper, researcher designed a delay-dependent wide-area damping controller based on Static Synchronous Series Compensator (SSSC) to enhance the power system stability by using remote signal obtained from Wide-Area Measurement System (WAMS). This remote signals introduces a time delay in the feedback signal, as a result, degrade the system damping performance and even causes instability of close loop power system. To find out various controller parameters, use of Genetic Algorithm (GA) is adopted. The performance of Multi-Machines system is evaluated with proposed controller including signal delay and Conventional PSS(CPSS) in MATLAB simulation. Various results show that SSSC based controller damp-out the inter-area oscillations under small disturbance more effectively as compare to LPSS


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3466 ◽  
Author(s):  
Ashraf Khalil ◽  
Ang Swee Peng

The application of the phasor measurement units and the wide expansion of the wide area measurement units make the time delay inevitable in power systems. The time delay could result in poor system performance or at worst lead to system instability. Therefore, it is important to determine the maximum time delay margin required for the system stability. In this paper, we present a new method for determining the delay margin in the power system. The method is based on the analysis in the s-domain. The transcendental time delay characteristics equation is transformed to a frequency dependent equation. The spectral radius is used to find the frequencies at which the roots cross the imaginary axis. The crossing frequencies are determined through the sweeping test and the binary iteration algorithm. A single machine infinite bus system equipped with automatic voltage regulator and power system stabilizer is chosen as a case study. The delay margin is calculated for different values of the power system stabilizer (PSS) gain, and it is found that increasing the PSS gain decreases the delay margin. The effectiveness of the proposed method has been proved through comparing it with the most recent published methods. The method shows its merit with less conservativeness and fewer computations.


Author(s):  
Adeyemi Charles Adewole ◽  
Raynitchka Tzoneva

The renewed quest for situational awareness in power systems has brought about the use of digital signal processing of power system measurements, and the transmission of such data to control centres via communication networks. At the control centres, power system stability algorithms are executed to provide monitoring, protection, and control in order to prevent blackouts. This can be achieved by upgrading the existing Supervisory Control and Data Acquisition (SCADA) systems through the deployment of newly proposed power system synchrophasor-based applications for Wide Area Monitoring, Protection, and Control (WAMPAC). However, this can only be done when there is a complete understanding of the methods and technologies associated with the communication network, message structure, and formats required. This paper presents an analysis of the IEEE C37.118 synchrophasor message framework, message formats, and data communication of synchrophasor measurements from Phasor Measurement Units (PMUs) for WAMPAC schemes in smart grids. A newly designed lab-scale testbed is implemented and used in the practical experimentation relating to this paper. Synchrophasor measurements from the PMUs are captured using a network protocol analyzer software-Wireshark, and the compliance of the synchrophasor message structures and formats captured was compared to the specifications defined in the IEEE C37.118 synchrophasor standard.


Author(s):  
Mortaza Farsadi ◽  
Arash Ghasemi

Recent technological progresses in the wide-area measurement systems (WAMS) are realizing the centralized controls as a breakthrough for improving the power systems stability. The most challenging deficiency against WAMS technology is related to communication delays. If this latency is neglected, it can deteriorate the damping performance of closed loop control or even degrade the system stability. This paper investigates a conventional Wide Area Damping Controller (WADC) for a static synchronous series compensator (SSSC) to damp out the Sub-Synchronous Resonance (SSR) and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based- optimization (TLBO) algorithm has been implemented to normalize and optimize the parameters of the global SSR damping controller. The IEEE Second Benchmark Model is considered as the system under study and all simulations are carried out in MATLAB/SIMULINK environment.


Author(s):  
Jin Lin ◽  
Lin Cheng

Numerical simulation, which relies on precise mathematical models and parameters of elements, is currently the most efficient tool to study the power system stability. However, since some of grid companies in China did not foresee the rapid development of wind power, the lack of parameters information of wind farms negatively affects the system simulation study with scalable wind energy integration. In addition, the field condition of wind farm also limits the grid company to equip extra real-time measurement equipments to measure the dynamic response of wind generators. This paper proposes a method based on wide-area trajectory sensitivities to identify the parameters of FSIG-based (Fixed Speed Induction Generator) wind farms. By this method, the data recorded by Wide Area Measurement System (WAMS) are used to process identification, which satisfies the requirement from grid companies. This paper gives a detailed description on the modelling of identification, the analysis of trajectory sensitivity and the algorithm to solve the optimization problem. Both of the case studies of modified 9 and 39 bus systems show the numerical simulation results are closer to realistic after parameter identification, and it is feasible and beneficial to use this identification method based on WATS to enhance the accuracy of system simulation with scalable wind energy integration.


The concept of wide-area control and protection as an application on real-time wide-area measurement systems makes the transient stability prediction more accurate in early time after fault occurrences. The transient prediction is the first step in the dynamic control system to avoid any unwanted emergency or non-stable power system state. In this paper, an early predictionof the power system stability once the fault cleaning using real-time dynamic data collected by WAMS is proposed based on an artificial neural network (ANN). The dataset collected by the different contingency analyses on the IEEE 39 bus test system is used to train a multilayer perceptron network. Pre-fault, during- fault, and post-fault generators' speeds are fed to ANN as inputs, and the status of the overall system, either stable or not, is the output of ANN. The proposed model can predict an unstable state within 100 ms after the fault. NEPLAN simulator is used to simulate the dynamic analysis ofthe IEEE 39-Bus test system, and MATLAB 2019a is used to design the ANN.


Sign in / Sign up

Export Citation Format

Share Document