scholarly journals Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3477 ◽  
Author(s):  
Alberto Bocca ◽  
Luca Bergamasco ◽  
Matteo Fasano ◽  
Lorenzo Bottaccioli ◽  
Eliodoro Chiavazzo ◽  
...  

In recent years, various online tools and databases have been developed to assess the potential energy output of photovoltaic (PV) installations in different geographical areas. However, these tools generally provide a spatial resolution of a few kilometers and, for a systematic analysis at large scale, they require continuous querying of their online databases. In this article, we present a methodology for fast estimation of the yearly sum of global solar irradiation and PV energy yield over large-scale territories. The proposed method relies on a multiple-regression model including only well-known geodata, such as latitude, altitude above sea level and average ambient temperature. Therefore, it is particularly suitable for a fast, preliminary, offline estimation of solar PV output and to analyze possible investments in new installations. Application of the method to a random set of 80 geographical locations throughout Europe and Africa yields a mean absolute percent error of 4.4% for the estimate of solar irradiation (13.6% maximum percent error) and of 4.3% for the prediction of photovoltaic electricity production (14.8% maximum percent error for free-standing installations; 15.4% for building-integrated ones), which are consistent with the general accuracy provided by the reference tools for this application. Besides photovoltaic potentials, the proposed method could also find application in a wider range of installation assessments, such as in solar thermal energy or desalination plants.

2019 ◽  
Vol 122 ◽  
pp. 02004 ◽  
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

In 2017, electricity generation from renewable sources contributed more than one quarter (30.7%) to total EU-28 gross electricity consumption. Wind power is for the first time the most important source, followed closely by hydro power. The growth in electricity from photovoltaic energy has been dramatic, rising from just 3.8 TWh in 2007, reaching a level of 119.5 TWh in 2017. Over this period, the contribution of photovoltaic energy to all electricity generated in the EU-28 from renewable energy sources increased from 0.7% to 12.3%. During this period the investment cost of a photovoltaic power plant has decreased considerably. Fundamentally, the cost of solar panels and inverters has decreased by more than 50%. The solar photovoltaic energy potential depends on two parameters: global solar irradiation and photovoltaic panel efficiency. The average solar irradiation in Spain is 1,600 kWh m-2. This paper analyzes the economic feasibility of developing large scale solar photovoltaic power plants in Spain. Equivalent hours between 800-1,800 h year-1 and output power between 100-400 MW have been considered. The profitability analysis has been carried out considering different prices of the electricity produced in the daily market (50-60 € MWh-1). Net Present Value (NPV) and Internal Rate of Return (IRR) were estimated for all scenarios analyzed. A solar PV power plant with 400 MW of power and 1,800 h year-1, reaches a NPV of 196 M€ and the IRR is 11.01%.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Macben Makenzi ◽  
Joseph Muguthu ◽  
Evan Murimi

Many photovoltaic solar projects do not achieve optimum energy and power outputs due to poor technical sizing and system design approaches. Concerns on low-conversion rates, high intermittencies, and high-capital costs still haunt PV projects. The establishment of design methodologies that would result in increased outputs from solar arrays is crucial in addressing the aforementioned issues. The tilt angles of installed PV modules are critical factors that influence the power output of solar modules. Several resources are available that provide generic linear fits and estimation of tilt angles for various global regions. However, very few are capable of determining precise, location-specific tilt angles that would allow for optimal power output and energy generation. This paper presents a methodology developed to establish the optimum tilt angles for solar panels installed at specific locations, thus ensuring maximum energy generation. The modeling is based on the maximization of the solar irradiation incident on the surface of a PV panel by considering multiple site-specific variables. Different sets of transcendent equations have been derived which were used to calculate optimum tilt angles and the subsequent energy generation from specific configurations of photovoltaic arrays. The resulting algorithms were used to determine optimum tilt angles and energy generation for solar PV installations in Athi River, Kenya. Dynamic and static optimal tilt angles were compared with the region’s baseline industry practice of using a fixed tilt angle of 15◦. It was observed that the dynamic tilt angles improved the daily solar energy output by up to 6.15%, while the computed optimal static tilt angle provided a 2.87% output increment. This improvement presents a significant impact on the technical specification of the PV system with a consequent reduction in the investment and operational cost of such installations. It further demonstrated that the use of the optimum static tilt angle results in cost and space savings of up to 2.8% as compared to the standard industry practice. Additionally, 5.8% cost and space savings were attained by the utilization of dynamic tilt angles.


2020 ◽  
Vol 26 (4) ◽  
pp. 21-32
Author(s):  
Nibras Mahmood Obaid ◽  
Emad T. Hashim ◽  
Naseer K. Kasim

The performance analyses of 15 kWp (kW peak) Grid -Tied solar PV system (that considered first of its type) implemented at the Training and Energy Research Center Subsidiary of Iraqi Ministry of Electricity in Baghdad city has been achieved. The system consists of 72 modules arranged in 6 strings were each string contains 12 modules connected in series to increase the voltage output while these strings connected in parallel to increase the current output. According to the observed duration, the reference daily yields, array daily yields and final daily yields of this system were (5.9, 4.56, 4.4) kWh/kWp/day respectively. The energy yield was 1585 kWh/kWp/year while the annual total solar irradiation received by solar array system was 1986.4kWh/m2. The average power losses per day of array, system losses and overall losses were (1.38, 0.15, 1.53) kWh/kWp/day respectively. The average capacity factor and performance ratio per year were 18.4% and 75.5% respectively. These results highlighted the performance analyses of this PV solar system located in Baghdad city. The performance can be considered as good and significant comparing with other world PV solar stations.  


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nusrat Jahan Imu ◽  
Anayo Ezeamama ◽  
Saheed Matemilola

PurposeDecentralized solar systems are increasingly being used as alternative source of off-grid electrification in Bangladesh. They offer solutions to provide (clean) electricity to the low-income households that are not currently served by the national grid. The standards of solar systems need to be improved to maximize the benefits they offer for off-grid electrification.Design/methodology/approachA quantitative research approach was used to explore the power output performance of six solar systems samples. In order to realize a proper load management, daily power production was measured to determine the generation capacity of 50, 60 and 100 Wp monocrystalline and polycrystalline modules when average solar irradiation was 916 W/m2. In the testing system, the irradiation was measured by panel analyzer HT instrument I-V 400. The load arrangement comprised of different kinds of appliances (fan, light, TV). The daily consumption of energy by these loads was calculated using daily operational hours to determine system power performance.FindingsThe authors found that monocrystalline system performs better than polycrystalline by 0.39 kilowatt-hour (kWh) with capacity of 100 watt-peak (Wp) modules. The carbon dioxide (CO2) emissions reduction potential of our sample solar systems were also estimated by assuming a scenario. This was derived by using the electricity emission factor for natural gas (CH4), since CH4 is the main source of energy for power generation in Bangladesh. Savings in CO2 of 0.52 kgCO2/kWh is possible with the adoption of a 100 Wp monocrystalline module.Practical implicationsGovernment actions that promote the use of monocrystalline module will enhance the benefits of the use of solar systems in providing quality and sustainable electricity. This will contribute to government's efforts towards achieving some of the United Nations (UN) sustainable development goals (SDG) and resilience of the most vulnerable population to the effects and impacts of climate change.Originality/valueAlmost all solar modules found in off-grid areas are polycrystalline whose energy generation capacity is much lower compared to monocrystalline types. But use of low efficient polycrystalline solar module hindered the development of country's solar sector and option to save carbon emission. The use of highly efficient monocrystalline solar module will save also the country's land as the country has land scarcity challenges for establishing large-scale solar power plant. The authors also recommend actions that can be implemented at the national level to improve the attractiveness of monocrystalline solar systems in Bangladesh.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Kasra Mohammadi ◽  
Ali Mostafaeipour ◽  
Yagob Dinpashoh ◽  
Nima Pouya

Currently, wind energy utilization is being continuously growing so that it is regarded as a large contender of conventional fossil fuels. This study aimed at evaluating the feasibility of electricity generation using wind energy in Jarandagh situated in Qazvin Province in north-west part of Iran. The potential of wind energy in Jarandagh was investigated by analyzing the measured wind speed data between 2008 and 2009 at 40 m height. The electricity production and economic evaluation of four large-scale wind turbine models for operation at 70 m height were examined. The results showed that Jarandagh enjoys excellent potential for wind energy exploitation in 8 months of the year. The monthly wind power at 70 m height was in the range of 450.28–1661.62 W/m2, and also the annual wind power was 754.40 W/m2. The highest capacity factor was obtained using Suzlon S66/1.25 MW turbine model, while, in terms of electricity generation, Repower MM82/2.05 MW model showed the best performance with total annual energy output of 5705 MWh. The energy cost estimation results convincingly demonstrated that investing on wind farm construction using all nominated turbines is economically feasible and, among all turbines, Suzlon S66/1.25 MW model with energy cost of 0.0357 $/kWh is a better option.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3258
Author(s):  
Dries. Frank Duvenhage ◽  
Alan C. Brent ◽  
William H.L. Stafford ◽  
Dean Van Den Heever

Renewable Energy Technologies are rapidly gaining uptake in South Africa, already having more than 3900 MW operational wind, solar PV, Concentrating Solar Power (CSP) and biogas capacity. CSP has the potential to become a leading Renewable Energy Technology, as it is the only one inherently equipped with the facility for large-scale thermal energy storage for increased dispatchability. There are many studies that aim to determine the potential for CSP development in certain regions or countries. South Africa has a high solar irradiation resource by global standards, but few studies have been carried out to determine the potential for CSP. One such study was conducted in 2009, prior to any CSP plants having been built in South Africa. As part of a broader study to determine the impact of CSP on South Africa’s water resources, a geospatial approach was used to optimise this potential based on technological changes and improved spatial data. A tiered approach, using a comprehensive set of criteria to exclude unsuitable areas, was used to allow for the identification of suitable areas, as well as the modelling of electricity generation potential. It was found that there is more than 104 billion m2 of suitable area, with a total theoretical potential of more than 11,000 TWh electricity generating capacity.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2778
Author(s):  
Laurentiu Fara ◽  
Dan Craciunescu ◽  
Silvian Fara

The authors studied a working off-grid type photovoltaic (PV) pumping system for irrigation use. The methodology was based on digitalization analysis and numerical modeling as a preliminary stage. A mathematical model of the PV pumping installation considered the determination of the characteristic equations for all its components. These have been used together with the SISIFO simulation software to achieve the performances of the mechanical and electrical components of an advanced PV pumping system. Its global performance features, namely the monthly energy yield, monthly pumping yield, and monthly total performances (energy and flow rate) were introduced. Digital platform (DP) for PV systems characterized by three advanced technologies—machine learning (ML), digital twin (DT) and artificial intelligence (AI) was developed. The simulation results were discussed for a specific case study conducted for a location in the Southern Romania regarding the irrigation potential, taking into account the main meteorological parameters: solar irradiance and ambient temperature, related to the site. The AI approach was implemented to achieve an optimum operation of the PV pumping system by the use of the maximum power point tracking (MPPT) method and the MATLAB/Simulink software. A unified development of all the components of the PV pumping system using the SISIFO simulation software was established by the authors, with major implications in the development of solar PV installations on large-scale.


2021 ◽  
Vol 1 (2) ◽  
pp. 21-29
Author(s):  
Sahana L. ◽  
Naveen Kumaar ◽  
Hans Peter Waldl ◽  
Prasun Kumar Das ◽  
Karthik Ramanathan ◽  
...  

Across the world, the geographical conditions are varied, and the characteristics of dust depend on the local environmental conditions. The solar power generators must incorporate the soiling losses in their estimation for power output and therefore a methodology was developed to estimate the soiling correction factor. After extensive research, a comprehensive review was presented on the effect of soiling on performance of PV plants along with case studies of soiling experiments around the world. A soiling experiment was designed to develop the soiling correction factor. A methodology to calculate the soiling correction factor, which can be implemented in any location, was developed by analyzing the data from the soiling experiment. The effect of rainfall, humidity and wind on soiling was analyzed and documented. The performance of one 20 kWp PV plant was monitored to study the effect of weather-related parameters on the performance. The soiling correction factor varied from -1.36% to 3.67% during the period between June 2018 and June 2019 in Chennai. It was observed that the average PV conversion efficiency of the 20-kW plant was 11.75% and the average PR was 75%. It was observed that the correlation between module temperature and DC power; between humidity and DC power; between GTI and DC power varied every month. The soiling factor developed could be incorporated into the short-term day ahead solar forecasting model. The developed methodology could be applied at the any large-scale solar power plant around the world for yield assessment, designing as well as operational forecasting purposes.


Author(s):  
Baraa Mahmoud Dawoud ◽  
Siow Chun Lim

<span>Malaysia is rapidly expanding the generation capacity of solar power through large scale solar (LSS) projects with the aim to achieve 20% renewable energy mix by 2025. This has motivated many solar industry players to explore the usage of solar PV with single axis tracker (SAT) system. However, many are still hesitant due to the lack of understanding on the comparative performance between fixed mounted solar PV with solar PV with SAT system. This paper aims to provide a comparative analysis on the performance of both systems. Simulation using PVSyst 6.83 was performed in five potential LSS sites spread across Peninsular Malaysia in Perlis, Kelantan, Pahang, Selangor and Johor with the same installed capacity of 10.32MWp. The energy yield and capacity factor for 21 years were simulated. On the average, it was found that SAT outperforms fixed mounted solar PV system by 15.08% based on their performance on their first year operation. </span>


2013 ◽  
Author(s):  
M. Hammad ◽  
A. Al-Qtiemat ◽  
A. Alshqirate

The increasing fossil fuel costs have led the world to use the clean and naturally available energy from the sun to produce electric power. Parabolic trough technology is nowadays the most extended solar system for electricity production or steam generation for industrial processes. It is the most proven, lowest cost and large-scale solar power technology available today. It is basically composed of a concentrator collector field which converts solar irradiation into thermal energy that will be used as input for a Rankine power cycle. In such plants, a storage system can be implemented in order to increase plant production. This work aimed to conclude with a simulation model of a solar thermal power plant using a parabol solar concentrator. The Euro Trough (ET) Concentrator was used as case study. MATLAB software was used for the analysis and performance evaluation. Different working fluids were used in the simulation which were: Pressurized water, Boiling water and Oil (Therminol-VP1). It was found that using water (pressurized or boiling) in the receiver tube is better than the Therminol-VP1 oil. And the pressurized water has the highest value of efficiency compared to the boiling water and Therminol-VP1 oil. The oil using system presented the highest energy losses system, and the lowest efficiencies. The ET performance was tested at different places in Jordan, and the distribution of direct solar irradiance at different days around the year was calculate and exhibited for Ma’an city as a case study. A comparison between simulated results and that found in literature were carried out with observed good conformity.


Sign in / Sign up

Export Citation Format

Share Document