scholarly journals Novel Protection Scheme considering Tie Switch Operation in an Open-Loop Distribution System using Wavelet Transform

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1725 ◽  
Author(s):  
Hun-Chul Seo

Loop power distribution systems are gaining increasing attention due to improvements in the reliability of the power supply and the connection of distributed generation. With loop distribution systems, there is the possibility of mal-operation of the protection relay because of the existence of the tie switch and bi-directional current injection. In this paper, we propose a novel protection scheme considering the tie switch operation in the open loop power distribution system using wavelet transform. We analyze the possibility of mal-operation of the protection relay as a result of the normal load current after tie switch operation and analyze the characteristics of the normal load current and fault current injection after tie switch operation. Using these results, a new index is proposed to distinguish the normal load current and fault current, and a novel protection scheme based on this new index is proposed. The proposed method is modeled using an electromagnetic transients program and MATLAB, and the various simulations are performed according to the tie switch position, the fault location, and the success or failure of the fault section separation. From the simulation results, we can confirm that the normal load current and the fault current after tie switch operation can be accurately distinguished and the protection relay can accurately operate at only fault conditions.

2012 ◽  
Vol 622-623 ◽  
pp. 1882-1886
Author(s):  
Hadi Zayandehroodi ◽  
Azah Mohamed ◽  
Hussain Shareef ◽  
Masoud Farhoodnea ◽  
Marjan Mohammadjafari

The presence of renewable distributed generator (RDG) in a distribution system will have unfavorable impact on the operating system because the distribution system is no longer radial in nature and is not supplied by a single main power source. With RDGs in a distribution network, it brings about a change in the fault current level of the system and causes many problems in the protection system, such as false tripping of protective devices, protection blinding, an increase and decrease in short-circuit levels. This paper presents the effect of RDGs on the fault current level of the system. The operating protection issues particularly in cases where RDGs are added to a LV distribution feeder are also discussed.


Author(s):  
Bhavesh Bhalja ◽  
Pragnesh Shah ◽  
Nilesh Chothani ◽  
Ravi Patel

Due to incorporation of Distributed Generation (DG), the traditional protection scheme for electric power distribution system lost its radial nature and behaves more like multifeed transmission system. Hence, there is a need to develop a new protection scheme for electric power distribution system which remains stable in all conditions. This paper presents a new directional protection scheme for distribution system containing DG. Authors have developed a laboratory prototype of the three-phase radial distribution system containing DG. The proposed scheme has also been simulated using the PSCAD/EMTDC software package with fault data generated by modeling the distribution systems. The proposed directional protection scheme has been tested for various types of faults in different sections of radial distribution network along with DG. At the end, a comparative evaluation of the results obtained using the developed laboratory prototype has been carried out with the simulation results obtained using PSCAD. It has been observed that the proposed scheme has the ability to isolate the faulted section without disturbing the healthy section in the presence of DG.


2019 ◽  
Vol 4 (1) ◽  
pp. 238
Author(s):  
Nahdia Rupawanti BR

Electric power distribution systems that use air cables or ground cables often experience various disturbances. Interference that often occurs is symmetry or non-symmetric interference which can be a short relationship between one phase to the ground, between phases or the breakdown of one or more. To find out the magnitude of the interference current, an analysis of the transformer distribution system is needed to determine the disturbances that will occur.The transformer which is the main equipment in a GI must be considered in order to get the proper current circuit and security. Designing the right transformer setting is an effort to protect equipment, systems and consumer needs from disturbances that may occur in the distribution system. The calculation of the fault current and the magnitude of the nominal current of the transformer will be used as an important reference in determining the transformer settings in the distribution of voltage to consumers.From the results of these calculations it can be concluded that the performance time of feeder relays is slower than the time of relay in the event. The data in the field is still in the right condition (the difference is not too far), so that the overall OCR-GFR setting in the field is still in good condition.


1993 ◽  
Vol 30 (3) ◽  
pp. 254-268 ◽  
Author(s):  
C.Y. Teo

A comprehensive software simulator for teaching power distribution systems An innovative distribution system simulator integrating load flow, fault current calculation and modelling of overcurrent relays and breaker operation is described. Appropriate sets of scenarios are generated for different levels of exercise and all actions taken by the student are logged, automatically evaluated and awarded a grade.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4810 ◽  
Author(s):  
Sang-Jae Choi ◽  
Sung-Hun Lim

Recently, studies on connecting distributed generation (DG) to power distribution systems through DC links have been actively conducted. When a fault in feeder of this power distribution system occurs, a voltage dip can happen in the grid. In order to prevent voltage dips, there are several solutions such as the application of a superconducting fault current limiter (SFCL). If a SFCL with a larger impedance is applied, the voltage dip of the grid is effectively prevented. However, this action can bring about the malfunction or the delayed operation of the over-current relay (OCR) due to the decreased fault current, which causes another problem of protection coordination between the protective relays. On the other hand, if the impedance of the SFCL is too low, excessive reactive power is supplied by the fault ride-through (FRT) regulation and the active power is reduced. This causes an active power imbalance on the DC link and increases the DC link’s voltage. As previous solutions to prevent the rise of DC links’ voltage, the deloading method and the application of a chopper resistor have been suggested. In this paper, a technique called active power tracking control (APTC), was proposed to suppress the rise of DC links’ voltage. Case studies considering the impedance of SFCL in the constructed power distribution system were carried out, and the rise of DC links’ voltage could be effectively suppressed without any significant delay in the operation of the OCR. This study is expected to solve both the voltage dip of the grid and the rise of DC links’ voltage when distributed generation is connected to a grid.


Author(s):  
Gunjan Varshney ◽  
Durg S. Chauhan ◽  
Madhukar P. Dave ◽  
Nitin

Background: In modern electrical power distribution systems, Power Quality has become an important concern due to the escalating use of automatic, microprocessor and microcontroller based end user applications. Methods: In this paper, power quality improvement has done using Photovoltaic based Distribution Static Compensator (PV-DSTATCOM). Complete simulation modelling and control of Photovoltaic based Distribution Static Compensator have been provided in the presented paper. In this configuration, DSTATCOM is fed by solar photovoltaic array and PV module is also helpful to maintain the DC link voltage. The switching of PV-STATCOM is controlled by Unit template based control theory. Results: The performance of PV-DSTATCOM has been evaluated for Unity Power Factor (UPF) and AC Voltage Control (ACVC) modes. Here, for studying the power quality issues three-phase distribution system is considered and results have been verified through simulation based on MATLAB software. Conclusion: Different power quality issues and their improvement are studied and presented here for harmonic reduction, DC voltage regulation and power factor correction.


Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 158
Author(s):  
Farzaneh Pourahmadi ◽  
Payman Dehghanian

Allocation of the power losses to distributed generators and consumers has been a challenging concern for decades in restructured power systems. This paper proposes a promising approach for loss allocation in power distribution systems based on a cooperative concept of game-theory, named Shapley Value allocation. The proposed solution is a generic approach, applicable to both radial and meshed distribution systems as well as those with high penetration of renewables and DG units. With several different methods for distribution system loss allocation, the suggested method has been shown to be a straight-forward and efficient criterion for performance comparisons. The suggested loss allocation approach is numerically investigated, the results of which are presented for two distribution systems and its performance is compared with those obtained by other methodologies.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1615
Author(s):  
Mehdi Firouzi ◽  
Saleh Mobayen ◽  
Hossein Shahbabaei Kartijkolaie ◽  
Mojtaba Nasiri ◽  
Chih-Chiang Chen

In this paper, an incorporated bridge-type superconducting fault current limiter (BSFCL) and Dynamic Voltage Restorer (DVR) is presented to improve the voltage quality and limiting fault current problems in distribution systems. In order to achieve these capabilities, the BSFCL and DVR are integrated through a common DC link as a BSFCL-DVR system. The FCL and DVR ports of the BSFCL-DVR system are located in the beginning and end of the sensitive loads’ feeder integrated to the point of common coupling (PCC) in the distribution system. At first, the principle operation of the BSFCL-DVR is discussed. Then, a control system for the BSFCL-DVR system is designed to enhance the voltage quality and limit the fault current. Eventually, the efficiency of the BSFCL-DVR system is verified through the PSCAD/EMTDC simulation.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 775
Author(s):  
Sheng-Yu Tseng ◽  
Jun-Hao Fan

Due to the advantages of power supply systems using the DC distribution method, such as a conversion efficiency increase of about 5–10%, a cost reduction of about 15–20%, etc., AC power distribution systems will be replaced by DC power distribution systems in the future. This paper adopts different converters to generate DC distribution system: DC/DC converter with PV arrays, power factor correction with utility line and full-bridge converter with multiple input sources. With this approach, the proposed full-bridge converter with soft-switching features for generating a desired voltage level in order to transfer energy to the proposed DC distribution system. In addition, the proposed soft-switching full-bridge converter is used to generate the DC voltage and is applied to balance power between the PV arrays and the utility line. Due to soft-switching features, the proposed full-bridge converter can be operated with zero-voltage switching (ZVS) at the turn-on transition to increase conversion efficiency. Finally, a prototype of the proposed full-bridge converter under an input voltage of DC 48 V, an output voltage of 24 V, a maximum output current of 21 A and a maximum output power of 500 W was implemented to prove its feasibility. From experimental results, it can be found that its maximum conversion efficiency is 92% under 50% of full-load conditions. It was shown to be suitable for DC distribution applications.


Sign in / Sign up

Export Citation Format

Share Document