scholarly journals Power Generation from a Hybrid Generator (TENG-EMG) Run by a Thermomagnetic Engine Harnessing Low Temperature Waste Heat

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1774 ◽  
Author(s):  
Zeeshan ◽  
Rahate Ahmed ◽  
Wongee Chun ◽  
Seung Jin Oh ◽  
Yeongmin Kim

This work explored the scavenging of low temperature waste heat and conversion of it into electrical energy through the operation of a gadolinium (Gd) based thermomagnetic engine. Gd is one of the unique materials whose magnetic property changes from ferromagnetic to paramagnetic depending on the temperature (“the Curie temperature”), which is around 20 °C. In the present work, two different types of generators were designed and applied to the rotating shaft of a Gd-based thermomagnetic engine developed for low temperature differential (LTD) applications. Of these, one is the so-called triboelectric nanogenerator (TENG), and the other is the electromagnetic generator (EMG). These have been designed to produce electricity from the rotating shaft of the thermomagnetic engine, exploiting both the electromagnetic and triboelectric effects. When operated at a rotational speed of 251 rpm with a temperature difference of 45 °C between the hot and cold water jets, the hybrid (TENG-EMG) generator produced a combined pulsating DC open circuit voltage of 5 V and a short circuit current of 0.7 mA. The hybrid generator effectively produced a maximum output power of 0.75 mW at a loading resistance of 10 kΩ.

Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 613 ◽  
Author(s):  
Tao Chen ◽  
Qiongfeng Shi ◽  
Kunpu Li ◽  
Zhan Yang ◽  
Huicong Liu ◽  
...  

Triboelectric nanogenerator (TENG) is a promising technology because it can harvest energy from the environment to enable self-sustainable mobile and wearable electronic devices. In this work, we present a flexible touch pad capable of detecting the contact location of an object and generating substantial energy simultaneously based on the coupling of triboelectric effects and electrostatic induction. The touch pad consists of Polytetrafluoroethylene (PTFE) thin film, multiple Aluminum (Al) electrodes and Polyethylene terephthalate (PET) layers, which can be achieved through low cost, simplified and scalable fabrication process. Different from the conventional multi-pixel-based positioning sensor (i.e., large array of sensing elements and electrodes), the analogue method proposed here is used to implement the positioning function with only four electrodes. Position location can achieve a detecting resolution of as small as 1.3 mm (the size of locating layer is 7.5 cm × 7.5 cm). For the energy harvesting part, a multilayer structure is designed to provide higher current output. The open circuit voltage of the device is around 420 V and the short circuit current can reach up to 6.26 µA with current density of 0.25 µA/cm2. The maximum output power obtained is approximately 10 mW, which is 0.4 mW/cm2. The flexibility and significantly reduced number of electrodes enable the proposed touch pad to be readily integrated into portable electronic devices, such as intelligent robots, laptops, healthcare devices, and environmental surveys, etc.


2018 ◽  
Vol 281 ◽  
pp. 788-794
Author(s):  
S. Guo ◽  
Ning Su ◽  
Fu Li ◽  
Da Wei Liu ◽  
Bo Li

A novel thermoelectric micro-device was designed with n-type and p-type Bi-Te materials alloys via a template electrodeposition process. The glass template including 250 holes in 10×10 mm2with a thickness of 200~ 400 µm. The diameter of the holes is 50~ 80 µm and the distance of adjacent centers of the holes is 200 µm. According to the design, the performance of heat transference and thermoelectric energy generation are simulated by COMSOL Multiphysics. In order to simplify model, there are 16 units in total, and each unit is made up of 16 (4 × 4) pillars. In the simulation, the largest temperature difference is 7.8K on the conditions of 500 W/m2K in convection heat transfer coefficients and the maximum output potential of the module is 21.7 mV. The maximum output power achieved 96.9 µW under 500 W/m2K of heat transfer coefficient and 10 mA of current. Under ideal conditions, the value of open circuit voltage and maximum output power increases to nine times as the model, but short circuit current remains the same. When the heat transfer coefficient is 500 W/m2K and the current density is 10 mA, the maximum output power of the actual product achieved 871.7 µW.


2012 ◽  
Vol 51 (10S) ◽  
pp. 10NF08 ◽  
Author(s):  
Takahiro Kato ◽  
Takuma Miyake ◽  
Daisuke Tashima ◽  
Tatsuya Sakoda ◽  
Masahisa Otsubo ◽  
...  

2011 ◽  
Vol 71-78 ◽  
pp. 2077-2080 ◽  
Author(s):  
Cui Qiong Yan

A V-trough PV system with polysilicon cell array and super cell array has been constructed and tested. Open-circuit voltage, short-circuit current, output power, fill factor and influence of temperature on V-trough PV concentration system have been analyzed. The results indicate that the output power of 10 pieces of polysilicon cell array is 6.198W and it is 1.21 times as that of non-concentration condition. Maximum output power of V-trough PV system with water cooling increase to 8.28W and power increment rate reach 62.67% compared with the non-concentration PV system. For the super cell array with no water cooling, the maximum output power of V-trough PV system varies from 7.834W to 14.223W. The results of this work provide some experimental support to the applications of the V-trough PV system.


2014 ◽  
Vol 556-562 ◽  
pp. 1894-1897
Author(s):  
Xin Wei Yuan ◽  
Jie Qin Shi

Optically powered system is a revolutionary new power delivery system, in which optical power is delivered over fiber to photovoltaic power converter, where optical power is transformed into electrical power. Therefore the system is inherently immune to RF, EMI, high voltage and lighting effects. Capable of powering electronic circuitry by optical fiber, this technology has been validated in industries such as electric power, communications, remote sensing and aerospace. To a large extent, photovoltaic power converter is a key component that decides the performance of optically powered system. In this paper, the commonly used GaAs photovoltaic power converter is studied and tested. Parameter values like open circuit voltage, short circuit current, maximum output power, conversion efficiency and the optimum load resistance are obtained through experiment, which can be severed as important reference while choosing or designing DC-DC converter.


2015 ◽  
Vol 1092-1093 ◽  
pp. 91-95
Author(s):  
Zhen Yong Liu ◽  
Jian Qi Sun ◽  
Zhi Chun Ma

Effects of solar panels must be taken into account by the light intensity of its output characteristics in practical application, especially solar panels placed outdoor. So the light intensity coefficient is an important parameter to be considered. In this paper,we took the light intensity characteristics of single crystal silicon solar cell as the research object. Also,through transforming the illumination intensity which are 777.60W/m2,996.97 W/m2 and 1224.88 W/m2, we would finish researching the characteristics of the cell sheet, which included battery plate volt ampere characteristic, open circuit voltage, short circuit current and maximum output power. Also, we’ve got the relationship of Uoc-T, Isc-T and Pm-T, respectively and Put forward the better intensity theory. It would lay a solid foundation of practice for the further study on how to improve the rate of light conversion.


2012 ◽  
Vol 51 ◽  
pp. 10NF08
Author(s):  
Takahiro Kato ◽  
Takuma Miyake ◽  
Daisuke Tashima ◽  
Tatsuya Sakoda ◽  
Masahisa Otsubo ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Cheng-Chiang Chen ◽  
Lung-Chien Chen ◽  
Yi-Hsuan Lee

Indium zinc oxide (IZO)/cupper oxide (Cu2O) is a nontoxic nature and an attractive all-oxide candidate for low-cost photovoltaic (PV) applications. The present paper reports on the fabrication of IZO/Cu2O heterostructure solar cells which the Cu2O layers were prepared by oxidation of Cu thin films deposited on glass substrate. The measured parameters of cells were the short-circuit current (Isc), the open-circuit voltage (Voc), the maximum output power (Pm), the fill factor (FF), and the efficiency (η), which had values of 0.11 mA, 0.136 V, 5.05 μW, 0.338, and 0.56%, respectively, under AM 1.5 illumination.


2021 ◽  
Vol 13 (2) ◽  
pp. 55
Author(s):  
Asim Ahmed Mohamed Fadol ◽  
Mohammed M. Rashed ◽  
L. M. Abdalgadir ◽  
Essam E. Ali

Experimental results shows that all electrical parameters of solar cell such as maximum output power, open circuit voltage, short circuit current, and fill factor beside efficiency have been changed with temperature. According to results, the most significant is the temperature dependence of the voltage which decreases with increasing temperature while the current of cells slightly increases by temperature. The fill factor and the efficiency decrease upon increasing temperature. This confirms the fact that the voltage decrease is more significant than the current increase.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Fei-Lu Siaw ◽  
Kok-Keong Chong

This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells’ voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step isI-Vcurve prediction, to find the maximum output power of each array configuration. As a case study, twenty differentI-Vpredictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that theI-Vcurve closely resembles simulatedI-Vprediction, and measured maximum output power varies by only 1.34%.


Sign in / Sign up

Export Citation Format

Share Document