scholarly journals Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1884 ◽  
Author(s):  
Ahmed M. Agwa ◽  
Attia A. El-Fergany ◽  
Gamal M. Sarhan

In simulation studies, the precision of fuel cell models has a vital role in the quality of results. Unfortunately, due to the shortage of manufacturer data given in the datasheets, several unknown parameters should be defined to establish the fuel cell model for further precise analysis. This research addresses a novel application of the atom search optimization (ASO) algorithm to generate these unknown parameters of the fuel cell model and in particular of the polymer exchange membrane (PEM) type. The objective of this study is to establish an accurate model of the PEM fuel cells, which will provide accurate results of modeling and simulation in a steady-state condition. Simulations and further demonstrations were performed under MATLAB/SIMULINK. The viability of the proposed models was appraised by comparing its simulation results with the experimental results of number of commercial PEM fuel cells. In the same context, the obtained numerical results by the proposed ASO-based method were compared to other challenging optimization methods-based results. Finally, parametric tests were made which indicated the robustness of the ASO results as well. It can be stated here that ASO performs well and has a good capability to extract the unknown parameters with lesser errors.

10.6036/10099 ◽  
2021 ◽  
Vol DYNA-ACELERADO (0) ◽  
pp. [ 8 pp.]-[ 8 pp.]
Author(s):  
SALAH KAMAL ◽  
ATTIA EL-FERGANY ◽  
EHAB EHAB ELSAYED ELATTAR ◽  
AHMED AGWA

The accuracy of fuel cell (FC) models is important for the further numerical simulations and analysis at several conditions. The electrical (I-V) characteristic of the polymer exchange membrane fuel cells (PEMFCs) has high degree of nonlinearity comprising uncertain seven parameters as they aren’t given in fabricator's datasheets. These seven parameters need to be obtained to have the PEMFC model in order. This research addresses an up-to-date application of the gradient-based optimizer (GBO) to generate the best estimated values of such uncertain parameters. The estimation of these uncertain parameters is adapted as optimization problem having a cost function (CF) subjects to set of self-constrained limits. Three test cases of widely used PEMFCs units; namely, SR-12, 250-W module and NedStack PS6 to appraise the performance of the GBO are demonstrated and analyzed. The best values of the CF are 0.000142, 0.33598, and 2.10025 V2 for SR-12, 250-W module and NedStack PS6; respectively. Furthermore, the assessment of the GBO-based model is made by comparing its obtained results with the experiential results of these typical PEMFCs plus comparisons to other methods. At a due stage, many scenarios as a result of operating variations in regard to inlet regulation pressures and unit temperatures are performed. The copped reported results of the studied scenarios indicate the effectiveness of the GBO in establishing an accurate PEMFC model.


2009 ◽  
Vol 23 (03) ◽  
pp. 537-540 ◽  
Author(s):  
JIANG HUI YIN ◽  
JUN CAO

A general proton exchange membrane fuel cell model including two finite-thickness catalysts is developed in this study, allowing for an in-depth understanding of the effects of the two key electrochemical reactions taking place in the two catalysts. The model is used to predict the performances of fuel cells employing two different flow channel designs, providing insights for fuel cell design and performance optimization.


2021 ◽  
Author(s):  
Jianghui Yin

A detailed non-isothermal computational fluid dynamics (CFD) model for proton electrolyte membrane (PEM) fuel cells is developed in this thesis. This model consists of the equations of continuity, momentum, energy, species concentrations, and electric potentials in different regions of a PEM fuel cell. In particular, the fairly thin catalyst layers of the fuel cell are assigned a finite thickness instead of being treated as nil thickness interfaces in other PEM fuel cell models. Various source/sink terms are presented to associate the conservation equations with the electrochemical reaction kinetics. The water balance in the membrane is modeled by coupling diffusion of water, pressure variation, and the electro-osmotic drag. The membrane swelling effect is explicitly considered the newly derived model, leading to a set of novel water and proton transport equations for a membrane under the partial hydration condition. The electron transport in the catalyst layers, gas diffusion layers and bipolar plates are also described. The PEM fuel cell model developed has been implemented into a commercial CFD software package for simulating various flow and transport phenomena arising in operational PEM fuel cells, analyzing the impact of design and operating parameters on the cell performance, and optimizing the PEM fuel cell design.


Author(s):  
Sahuar Sahu

Interest in PEM fuel cells has grown rapidly in recent years because of its possible applications. The performance of PEM fuel cells is strongly affected by various physical factors, such as the flow of reactant gas, thermal management and water management. The performance and characteristics of a PEM fuel cell have been analysed through the development of a 3D model and numerical simulation. The result obtained from the computational model shows details of species movement, charge Transport and mass transfer phenomena. This paper also investigates the influence of input parameters on the output of the PEM fuel cell model. The result from the analytical study is compared with experimental results to check the accuracy of the model.


2021 ◽  
Author(s):  
Jianghui Yin

A detailed non-isothermal computational fluid dynamics (CFD) model for proton electrolyte membrane (PEM) fuel cells is developed in this thesis. This model consists of the equations of continuity, momentum, energy, species concentrations, and electric potentials in different regions of a PEM fuel cell. In particular, the fairly thin catalyst layers of the fuel cell are assigned a finite thickness instead of being treated as nil thickness interfaces in other PEM fuel cell models. Various source/sink terms are presented to associate the conservation equations with the electrochemical reaction kinetics. The water balance in the membrane is modeled by coupling diffusion of water, pressure variation, and the electro-osmotic drag. The membrane swelling effect is explicitly considered the newly derived model, leading to a set of novel water and proton transport equations for a membrane under the partial hydration condition. The electron transport in the catalyst layers, gas diffusion layers and bipolar plates are also described. The PEM fuel cell model developed has been implemented into a commercial CFD software package for simulating various flow and transport phenomena arising in operational PEM fuel cells, analyzing the impact of design and operating parameters on the cell performance, and optimizing the PEM fuel cell design.


2005 ◽  
Vol 2 (4) ◽  
pp. 290-294 ◽  
Author(s):  
Shuo-Jen Lee ◽  
Ching-Han Huang ◽  
Yu-Pang Chen ◽  
Chen-Te Hsu

Aluminum was considered a good candidate material for bipolar plates of the polymer electrolyte membrane (PEM) fuel cells due to its low cost, light weight, high strength and good manufacturability. But there were problems of both chemical and electrochemical corrosions in the PEM fuel cell operating environment. The major goals of this research are to find proper physical vapor deposition (PVD) coating materials which would enhance surface properties by making significant improvements on corrosion resistance and electrical conductivity at a reasonable cost. Several coating materials had been studied to analyze their corrosion resistance improvement. The corrosion rates of all materials were tested in a simulated fuel cell environment. The linear polarization curve of electrochemical method measured by potentiostat instrument was employed to determine the corrosion current. Results of the corrosion tests indicated that all of the coating materials had good corrosion resistance and were stable in the simulated fuel cell environment. The conductivities of the coated layers were better and the resistances changed very little after the corrosion test. At last, single fuel cells were made by each PVD coating material. Fuel cell tests were conducted to determine their performance w.r.t. that was made of graphite. The results of fuel cell tests indicated that metallic bipolar plates with PVD coating could be used in PEM fuel cells.


2016 ◽  
Vol 30 (16) ◽  
pp. 1650155 ◽  
Author(s):  
Ebrahim Afshari ◽  
Masoud Ziaei-Rad ◽  
Nabi Jahantigh

In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.


Author(s):  
Luis Breziner ◽  
Peter Strahs ◽  
Parsaoran Hutapea

The objective of this research is to analyze the effects of vibration on the performance of hydrogen PEM fuel cells. It has been reported that if the liquid water transport across the gas diffusion layer (GDL) changes, so does the overall cell performance. Since many fuel cells operate under a vibrating environment –as in the case of automotive applications, this may influence the liquid water concentration across the GDL at different current densities, affecting the overall fuel cell performance. The problem was developed in two main steps. First, the basis for an analytical model was established using current models for water transport in porous media. Then, a series of experiments were carried, monitoring the performance of the fuel cell for different parameters of oscillation. For sinusoidal vibration at 10, 20 and 50Hz (2 g of magnitude), a decrease in the fuel cell performance by 2.2%, 1.1% and 1.3% was recorded when compared to operation at no vibration respectively. For 5 g of magnitude, the fuel cell reported a drop of 5.8% at 50 Hz, whereas at 20 Hz the performance increased by 1.3%. Although more extensive experimentation is needed to identify a relationship between magnitude and frequency of vibration affecting the performance of the fuel cell as well as a throughout examination of the liquid water formation in the cathode, this study shows that sinusoidal vibration, overall, affects the performance of PEM fuel cells.


Author(s):  
Ivan Vasyukov ◽  

Static and dynamic computer models of fuel cells are considered. A static model is determined that most ac-curately reproduces the current-voltage characteristic of a real fuel cell. A method for tuning it according to the experimental I - V characteristic by the least squares method is proposed. A method for its adjustment ac-cording to the experimental I - V characteristic by the method of gradient descent is proposed. A modified elec-trical equivalent circuit of a fuel cell has been developed, which simulates its dynamic response, taking into ac-count the damping effect of eddy currents during operation of a stack of fuel cells on a pulse voltage converter. A method is proposed for determining the parameters of the model from the experimental oscillograms of the current and voltage of the stack. A universal model of a stack of fuel cells in LTspice has been developed, which makes it possible to simulate a dynamic response and, if necessary, simulate a real static I – V characteristic of the stack.


Sign in / Sign up

Export Citation Format

Share Document