scholarly journals DBSCAN-Based Thermal Runaway Diagnosis of Battery Systems for Electric Vehicles

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2977 ◽  
Author(s):  
Da Li ◽  
Zhaosheng Zhang ◽  
Peng Liu ◽  
Zhenpo Wang

Battery system diagnosis and prognosis are essential for ensuring the safe operation of electric vehicles (EVs). This paper proposes a diagnosis method of thermal runaway for ternary lithium-ion battery systems based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering. Two-dimensional fault characteristics are first extracted according to battery voltage, and DBSCAN clustering is used to diagnose the potential thermal runaway cells (PTRC). The periodic risk assessing strategy is put forward to evaluate the fault risk of battery cells. The feasibility, reliability, stability, necessity, and robustness of the proposed algorithm are analyzed, and its effectiveness is verified based on datasets collected from real-world operating electric vehicles. The results show that the proposed method can accurately predict the locations of PTRC in the battery pack a few days before the thermal runaway occurrence.

Author(s):  
Jichao Hong ◽  
Zhenpo Wang ◽  
Peng Liu

This paper presents a thermal runaway prognosis scheme based on the big-data platform and entropy method for battery systems in electric vehicles. It can simultaneously realize the diagnosis and prognosis of thermal runaway caused by the temperature fault through monitoring battery temperature during vehicular operations. A vast quantity of real-time voltage monitoring data was collected in the National Service and Management Center for Electric Vehicles (NSMC-EV) in Beijing to verify the effectiveness of the presented method. The results show that the proposed method can accurately forecast both the time and location of the temperature fault within battery packs. Furthermore, a temperature security management strategy for thermal runaway is proposed on the basis of the Z-score approach and the abnormity coefficient is set to make real-time precaution of temperature abnormity.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 19175-19186
Author(s):  
Jiuchun Jiang ◽  
Xinwei Cong ◽  
Shuowei Li ◽  
Caiping Zhang ◽  
Weige Zhang ◽  
...  

2021 ◽  

Thermal propagation test of lithium-ion battery is an important method to verify the safety of battery system, and how to effectively trigger the thermal runaway of a cell and minimize the energy introduced into the system become the key of test method design. In this work, the influence of different heating area and different heating power on thermal runaway of prismatic cells and pouch cells is studied. The results show that when the heating area is fixed, the heating power increases, the heating time required to trigger the thermal runaway of the cells becomes shorter. The energy needed to be introduced becomes smaller, but there will be a minimum value of the introduced energy. On the other hand, the thermal runaway results of prismatic cells are more sensitive to the change of heating area, and the thermal runaway results of pouch cells are more sensitive to heating power.


Author(s):  
Xiaoyi Xie ◽  
Dongsheng Ren ◽  
Li Wang ◽  
Xuning Feng ◽  
Xiangming He

Abstract The thermal runaway behavior of lithium-ion cells plays a crucial role in the safety management of the powertrain in electric vehicles. In this study, the effect of states of charge (SOC) on the thermal runaway behavior of commercial LiNi1/3Mn1/3Co1/3O2 (NMC)-based pouch cells is investigated using accelerating rate calorimetry (ARC) and ex-situ X-ray diffraction. By studying the differences in the onset temperature of self-heating (T1) and the onset temperature of thermal runaway (T2) along with the mass loss between the different SOCs, we observed that higher SOC led to a decrease in the T2. However, T1 initially increased and then decreased with increasing SOC. These trends were attributed to the phase change of cathode material and separator. The ARC results also indicated the occurrence of endothermic reactions during the self-heating accumulation period. The findings in this study are helpful for thermal safety management of battery powertrain for electric vehicles.


2020 ◽  
Vol 32 ◽  
pp. 101771
Author(s):  
Amrit Kumar Thakur ◽  
Rajendran Prabakaran ◽  
M.R. Elkadeem ◽  
Swellam W. Sharshir ◽  
Müslüm Arıcı ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1171
Author(s):  
Woong-Ki Kim ◽  
Fabian Steger ◽  
Bhavya Kotak ◽  
Peter Knudsen ◽  
Uwe Girgsdies ◽  
...  

Lithium-ion traction battery systems of hybrid and electric vehicles must have a high level of durability and reliability like all other components and systems of a vehicle. Battery systems get heated while in the application. To ensure the desired life span and performance, most systems are equipped with a cooling system. The changing environmental condition in daily use may cause water condensation in the housing of the battery system. In this study, three system designs were investigated, to compare different solutions to deal with pressure differences and condensation: (1) a sealed battery system, (2) an open system and (3) a battery system equipped with a pressure compensation element (PCE). These three designs were tested under two conditions: (a) in normal operation and (b) in a maximum humidity scenario. The amount of the condensation in the housing was determined through a change in relative humidity of air inside the housing. Through PCE and available spacing of the housing, moisture entered into the housing during the cooling process. While applying the test scenarios, the gradient-based drift of the moisture into the housing contributed maximum towards the condensation. Condensation occurred on the internal surface for all the three design variants.


Sign in / Sign up

Export Citation Format

Share Document