scholarly journals Use of Markov Decision Processes in the Evaluation of Corrective Maintenance Scheduling Policies for Offshore Wind Farms

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2993 ◽  
Author(s):  
Helene Seyr ◽  
Michael Muskulus

Optimization of the maintenance policies for offshore wind parks is an important step in lowering the costs of energy production from wind. The yield from wind energy production is expected to fall, which will increase the need to be cost efficient. In this article, the Markov decision process is presented and how it can be applied to evaluate different policies for corrective maintenance planning. In the case study, we show an alternative to the current state-of-the-art policy for corrective maintenance that will achieve a cost-reduction when energy production prices drop below the current levels. The presented method can be extended and applied to evaluate additional policies, with some examples provided.

2021 ◽  
Vol 239 ◽  
pp. 109923
Author(s):  
Yibo Liang ◽  
Yu Ma ◽  
Haibin Wang ◽  
Ana Mesbahi ◽  
Byongug Jeong ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3703 ◽  
Author(s):  
Gulski ◽  
Jongen ◽  
Rakowska ◽  
Siodla

: The current power cables IEC standards do not provide adequate recommendations for after-laying testing and diagnosis of offshore export and inter-array power cables. However the standards IEEE 400 and IEEE 400.4 recommend partial discharge monitored testing, e.g., by continuous or damped AC voltages (DAC). Based on the international experiences, as collected in more than 20 years at different power grids, this contribution focuses on the use of DAC for after-laying testing and diagnosis of submarine power cables both the export and inter-array cables. Higher risk of failure, long unavailability, higher repair costs, and maintenance costs imply that advanced quality control is becoming more important. The current state of the existing and drafting international standards are based on onshore experiences and not related to the actual serious problems experienced with failures on export up to 230 kV and inter-array cables up to 66 kV. The application of damped AC as a testing solution in this concern is specially discussed. The advantages of this testing technique, in combination with actual testing examples, show the findings on export and inter-array cables at offshore wind farms.


2019 ◽  
Vol 7 (12) ◽  
pp. 441 ◽  
Author(s):  
Sergio Sánchez ◽  
José-Santos López-Gutiérrez ◽  
Vicente Negro ◽  
M. Dolores Esteban

Renewable energies are the future, and offshore wind is undoubtedly one of the renewable energy sources for the future. Foundations of offshore wind turbines are essential for its right development. There are several types: monopiles, gravity-based structures, jackets, tripods, floating support, etc., being the first ones that are most used up to now. This manuscript begins with a review of the offshore wind power installed around the world and the exposition of the different types of foundations in the industry. For that, a database has been created, and all the data are being processed to be exposed in clear graphic summarizing the current use of the different foundation types, considering mainly distance to the coast and water depth. Later, the paper includes an analysis of the evolution and parameters of the design of monopiles, including wind turbine and monopile characteristics. Some monomials are considered in this specific analysis and also the soil type. So, a general view of the current state of monopile foundations is achieved, based on a database with the offshore wind farms in operation.


Wind Energy ◽  
2005 ◽  
Vol 8 (3) ◽  
pp. 279-293 ◽  
Author(s):  
Johan Morren ◽  
Jan T. G. Pierik ◽  
Sjoerd W. H. de Haan ◽  
Jan Bozelie

2021 ◽  
Author(s):  
Morteza Bahadori ◽  
Hassan Ghassemi

Abstract In recent years, as more offshore wind farms have been constructed, the possibility of integrating various offshore renewable technologies is increased. Using offshore wind and solar power resources as a hybrid system provides several advantages including optimized marine space utilization, reduced maintenance and operation costs, and relieving wind variability on output power. In this research, both offshore wind and solar resources are analyzed based on accurate data through a case study in Shark Bay (Australia), where bathymetric information confirms using offshore bottom-fixed wind turbine regarding the depth of water. Also, the power production of the hybrid system of co-located bottom-fixed wind turbine and floating photovoltaic are investigated with the technical characteristics of commercial mono-pile wind turbine and photovoltaic panels. Despite the offshore wind, the solar energy output has negligible variation across the case study area, therefore using the solar platform in deep water is not an efficient option. It is demonstrated that the floating solar has a power production rate nearly six times more than a typical offshore wind farm with the same occupied area. Also, output energy and surface power density of the hybrid offshore windsolar system are improved significantly compared to a standalone offshore wind farm. The benefits of offshore wind and solar synergies augment the efficiency of current offshore wind farms throughout the world.


Sign in / Sign up

Export Citation Format

Share Document