scholarly journals Heat Pipe Thermal Management Based on High-Rate Discharge and Pulse Cycle Tests for Lithium-Ion Batteries

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3143 ◽  
Author(s):  
Deng ◽  
Li ◽  
Xie ◽  
Wu ◽  
Wang ◽  
...  

A battery thermal management system (BTMS) ensures that batteries operate efficiently within a suitable temperature range and maintains the temperature uniformity across the battery. A strict requirement of the BTMS is that increases in the battery discharge rate necessitate an increased battery heat dissipation. The advantages of heat pipes (HPs) include a high thermal conductivity, flexibility, and small size, which can be utilized in BTMSs. This paper experimentally examines a BTMS using HPs in combination with an aluminum plate to increase the uniformity in the surface temperature of the battery. The examined system with high discharge rates of 50, 75, and 100 A is used to determine its effects on the system temperature. The results are compared with those for HPs without fins and in ambient conditions. At a 100 A discharge current, the increase in battery temperature using the heat pipe with fins (HPWF) method is 4.8 °C lower than for natural convection, and the maximum temperature difference between the battery surfaces is 1.7 °C and 6.0 °C. The pulse circulation experiment was designed considering that the battery operates with a pulse discharge and temperature hysteresis. The depth of discharge is also considered, and the states-of-charge (SOC) values were 0.2, 0.5, and 0.8. The results of the two heat dissipation methods are compared, and the optimal heat dissipation structure is obtained by analyzing the experimental results. The results show that when the ambient temperature is 37 °C, differences in the SOC do not affect the battery temperature. In addition, the HPWF, HP, and natural convection methods reached stable temperatures of 40.8, 44.3, and the 48.1 °C, respectively the high temperature exceeded the battery operating temperature range.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3881
Author(s):  
Hamidreza Behi ◽  
Danial Karimi ◽  
Rekabra Youssef ◽  
Mahesh Suresh Patil ◽  
Joeri Van Mierlo ◽  
...  

Lithium-ion (Li-ion) batteries have emerged as a promising energy source for electric vehicle (EV) applications owing to the solution offered by their high power, high specific energy, no memory effect, and their excellent durability. However, they generate a large amount of heat, particularly during the fast discharge process. Therefore, a suitable thermal management system (TMS) is necessary to guarantee their performance, efficiency, capacity, safety, and lifetime. This study investigates the thermal performance of different passive cooling systems for the LTO Li-ion battery cell/module with the application of natural convection, aluminum (Al) mesh, copper (Cu) mesh, phase change material (PCM), and PCM-graphite. Experimental results show the average temperature of the cell, due to natural convection, Al mesh, Cu mesh, PCM, and PCM-graphite compared with the lack of natural convection decrease by 6.4%, 7.4%, 8.8%, 30%, and 39.3%, respectively. In addition, some numerical simulations and investigations are solved by COMSOL Multiphysics®, for the battery module consisting of 30 cells, which is cooled by PCM and PCM-graphite. The maximum temperature of the battery module compared with the natural convection case study is reduced by 15.1% and 17.3%, respectively. Moreover, increasing the cell spacing in the battery module has a direct effect on temperature reduction.


Author(s):  
Kevin K. Parsons ◽  
Thomas J. Mackin

The transient thermal response of a 15-cell, 48 V, lithium-ion battery pack for an unmanned ground vehicle (UGV) was simulated using ANSYS fluent. Heat generation rates and specific heat capacity of a single cell were experimentally measured and used as input to the thermal model. A heat generation load was applied to each battery, and natural convection film boundary conditions were applied to the exterior of the enclosure. The buoyancy-driven natural convection inside the enclosure was modeled along with the radiation heat transfer between internal components. The maximum temperature of the batteries reached 65.6 °C after 630 s of usage at a simulated peak power draw of 3600 W or roughly 85 A. This exceeds the manufacturer's maximum recommended operating temperature of 60 °C. We present a redesign of the pack that incorporates a passive thermal management system consisting of a composite expanded graphite (EG) matrix infiltrated with a phase-changing paraffin wax. The redesigned battery pack was similarly modeled, showing a decrease in the maximum temperature to 50.3 °C after 630 s at the same power draw. The proposed passive thermal management system kept the batteries within their recommended operating temperature range.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 879-891
Author(s):  
Shixue Wang ◽  
Kaixiang Li ◽  
Ming Gao ◽  
Junyao Wang

Lithium-ion batteries in electric vehicles generate heat continuously, leading to high temperature of the battery packs and significant temperature differences between the battery cells, which eventually deteriorate the performance and lifespan of lithium-ion batteries. Therefore, a novel battery thermal management system that equipped the battery pack with fins was proposed and experimentally studied in this paper. The thermal behavior of lithium-ion batteries with different discharge rates and fin thicknesses was investigated. The results show that under natural-convection conditions, the addition of fins restricted the significant increase of the battery pack temperature and improved the uniformity of temperature distribution in the battery pack. Additionally, thicker fins satisfied the temperature requirements at higher discharge rates and greater discharge depths. Under condition of 2C discharge at 80% depth of discharge, compared to no clearance structure the 1 mm and 3 mm aluminum finned structure decreased the maximum temperature rise and the maximum temperature difference by 26.5%, 40.8%, and 9.5%, 33.3%, respectively. However, the trade-offs and optimization between the thermal load, weight, and volume increase caused by the addition of fins should be further investigated.


Author(s):  
Jianping Cheng ◽  
Shenlong Shuai ◽  
Renchen Zhao ◽  
Zhiguo Tang

Abstract An effective battery thermal management system (BTMS) is essential for controlling both the maximum temperature and the temperature uniformity of a battery module. In this study, a novel and lightweight BTMS for prismatic batteries based on a heat pipe is proposed. A numerical model is created to study the influence of heat transfer designs and other factors on the thermal performance of the BTMS, and the simulation results are checked experimentally. The results show that when the condensation section of the heat pipe is cooled by liquid, the maximum temperature of the battery (Tmax) is reduced by 18.1% compared with air cooling. Decreasing the coolant temperature can reduce T_max, but can also lead to an undesirable temperature nonuniformity. The T_max and the maximum temperature difference (ΔTmax) in a battery module both increase rapidly as the discharge rate rises. The Tmax and ΔTmax are lower than 40 °C and 5 °C respectively when the discharge rate of the battery is lower than 2C. Under preheating conditions in cold weather, increasing the temperature of the heating medium can improve the temperature of the batteries, but at the same time it can make the battery module's temperature more nonuniform, and also add to cost. The temperature of the heating medium should therefore be selected with care. It could be concluded that the above results can provide perspectives in designing and optimizing battery thermal management system.


Author(s):  
Shuoqi Wang ◽  
Languang Lu ◽  
Dongsheng Ren ◽  
Xuning Feng ◽  
Shang Gao ◽  
...  

Thermal management system (TMS) plays an essential part in improving the safety and durability of the battery pack. Prior studies mainly focused on controlling the maximum temperature and temperature difference of the battery pack. Little attention has been paid to the influence of the TMS on thermal runaway (TR) prevention of battery packs. In this paper, a heat pipe-based thermal management system (HPTMS) is designed and investigated to illustrate both the capabilities of temperature controlling and TR propagation preventing. Good thermal performance could be achieved under discharge and charge cycles of both 2 C rate and 3 C rate while the equivalent heat dissipation coefficient of the HPTMS is calculated above 70 W/(m2·K). In the TR propagation test triggered by overcharge, the surface temperature of the battery adjacent to the overcharged cell can be controlled below 215 °C, the onset temperature of TR obtained by the adiabatic TR test of a single cell. Therefore, TR propagation is prevented due to the high heat dissipation of the HPTMS. To conclude, the proposed HPTMS is an effective solution for the battery pack to maintain the operating temperature and improve the safety level under abuse conditions.


2020 ◽  
Vol 10 (20) ◽  
pp. 7354
Author(s):  
Mingyi Chen ◽  
Siyu Zhang ◽  
Guoyang Wang ◽  
Jingwen Weng ◽  
Dongxu Ouyang ◽  
...  

Temperature is an important factor affecting the working efficiency and service life of lithium-ion battery (LIB). This study carried out the experiments on the thermal performances of Sanyo ternary and Sony LiFePO4 batteries under different working conditions including extreme conditions, natural convection cooling and phase change material (PCM) cooling. The results showed that PCM could absorb some heat during the charging and discharging process, effectively reduce the temperature and keep the capacity stable. The average highest temperature of Sanyo LIB under PCM cooling was about 54.4 °C and decreased about 12.3 °C compared with natural convection in the 2 C charging and discharging cycles. It was found that the addition of heat dissipation fins could reduce the surface temperature, but the effect was not obvious. In addition, the charge and discharge cycles of the two kinds of LIBs were compared at the discharge rates of 1 C and 2 C. Compared with natural convection cooling, the highest temperature of Sanyo LIB with PCM cooling decreased about 4.7 °C and 12.8 °C for 1 C and 2 C discharging respectively, and the temperature of Sony LIB highest decreased about 1.1 °C and 2 °C.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1937 ◽  
Author(s):  
Chuan-Wei Zhang ◽  
Shang-Rui Chen ◽  
Huai-Bin Gao ◽  
Ke-Jun Xu ◽  
Zhan Xia ◽  
...  

Scientific and reasonable battery thermal management systems contribute to improve the performance of a power battery, prolong its life of service, and improve its safety. Based on TAFEL-LAE895 type 100Ah ternary lithium ion power battery, this paper is conducted on charging and discharging experiments at different rates to study the rise of temperature and the uniformity of the battery. Paraffin can be used to reduce the surface temperature of the battery, while expanded graphite (EG) is added to improve the thermal conductivity and viscosity of the composite phase change material (CPCM), and to reduce the fluidity after melting. With the increase of graphite content, the heat storage capacity of phase change material (PCM) decreases, which affects the thermal management effect directly. Therefore, this paper combines heat pipe and semiconductor refrigeration technology to transform heat from the inner CPCM to the thermoelectric cooling sheet for heat dissipation. The results show that the surface temperature of the battery can be kept within a reasonable range when discharging at high rate. The temperature uniformity of the battery is improved and the energy of the battery is saved.


2021 ◽  
Vol 1885 (2) ◽  
pp. 022057
Author(s):  
Pengyang Qu ◽  
Wei Li ◽  
Yu Dong ◽  
Hanzhong Tao ◽  
Jianjie Cheng ◽  
...  

2021 ◽  
Vol 39 ◽  
pp. 102624
Author(s):  
Lincheng Wang ◽  
Yaohua Zhao ◽  
Zhenhua Quan ◽  
Jianan Liang

Batteries ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Thermal analysis and thermal management of lithium-ion batteries for utilization in electric vehicles is vital. In order to investigate the thermal behavior of a lithium-ion battery, a liquid cooling design is demonstrated in this research. The influence of cooling direction and conduit distribution on the thermal performance of the lithium-ion battery is analyzed. The outcomes exhibit that the appropriate flow rate for heat dissipation is dependent on different configurations for cold plate. The acceptable heat dissipation condition could be acquired by adding more cooling conduits. Moreover, it was distinguished that satisfactory cooling direction could efficiently enhance the homogeneity of temperature distribution of the lithium-ion battery.


Sign in / Sign up

Export Citation Format

Share Document