scholarly journals Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3798 ◽  
Author(s):  
Mansouri ◽  
Lashab ◽  
Sera ◽  
Guerrero ◽  
Cherif

Renewable energy systems (RESs), such as photovoltaic (PV) systems, are providing increasingly larger shares of power generation. PV systems are the fastest growing generation technology today with almost ~30% increase since 2015 reaching 509.3 GWp worldwide capacity by the end of 2018 and predicted to reach 1000 GWp by 2022. Due to the fluctuating and intermittent nature of PV systems, their large-scale integration into the grid poses momentous challenges. This paper provides a review of the technical challenges, such as frequency disturbances and voltage limit violation, related to the stability issues due to the large-scale and intensive PV system penetration into the power network. Possible solutions that mitigate the effect of large-scale PV system integration on the grid are also reviewed. Finally, power system stability when faults occur are outlined as well as their respective achievable solutions.

2003 ◽  
Vol 125 (3) ◽  
pp. 313-318 ◽  
Author(s):  
Tapani M. Alander ◽  
Pekka A. Heino ◽  
Eero O. Ristolainen

Electrically conductive substrates (i.e., metals) are often used in the mounting of semiconductor laser diodes. While metals offer a good electrical and thermal performance, they restrict the system integration due to lack of signal routing capability. Since the implementations utilizing laser diodes have become more common, the integration level has also become an important factor in these products. Mounting of lasers on insulative substrates is the key to large-scale integration. Organic boards form the de facto standard of insulative substrates; however, their use with lasers is impossible due to low thermal conductivity. Ceramics, however, offer nearly the same thermal performance as metals but as electrically insulative materials also provide the foundation for high integration levels. In this study the effects of three different ceramic substrates on the stresses within diode lasers was evaluated. Finite element method was used to calculate the mounting induced straining and the thermal performance of the substrate. The same procedure was employed to examine the optimum metallization thickness for the ceramic substrates. The results present how greatly the substrate material can affect the very delicate laser diode. The ceramic substrates, though having nearly the same properties, exhibited clearly distinctive behavior and a great difference in thermal and mechanical performance.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1710 ◽  
Author(s):  
Abdul Basit ◽  
Tanvir Ahmad ◽  
Asfand Yar Ali ◽  
Kaleem Ullah ◽  
Gussan Mufti ◽  
...  

Increasing large-scale integration of renewables in conventional power system has led to an increase in reserve power requirement owing to the forecasting error. Innovative operating strategies are required for maintaining balance between load and generation in real time, while keeping the reserve power requirement at its minimum. This research work proposes a control strategy for active power balance control without compromising power system security, emphasizing the integration of wind power and flexible load in automatic generation control. Simulations were performed in DIgSILENT for forecasting the modern Danish power system with bulk wind power integration. A high wind day of year 2020 was selected for analysis when wind power plants were contributing 76.7% of the total electricity production. Conventional power plants and power exchange with interconnected power systems utilize an hour-ahead power regulation schedule, while real-time series are used for wind power plants and load demand. Analysis showed that flexible load units along with wind power plants can actively help in reducing real-time power imbalances introduced due to large-scale integration of wind power, thus increasing power system reliability without enhancing the reserve power requirement from conventional power plants.


1992 ◽  
Vol 260 ◽  
Author(s):  
Y. -T. Shy ◽  
S. P. Murarka ◽  
A. R. Sitaram ◽  
P.-J. Ding ◽  
W. A. Lanford

ABSTRACTCopper is being investigated for application as multi-level interconnection metal in silicon ultra-large-scale integration (ULSI). On the other hand, COSi2 is being tested for application as contacts in sub-half micron ULSI circuits. Copper will thus be used on COSi2 to bring the electrical connection to the outside world. In this investigation we have therefore studied the interactions of copper with CoSi2 employing sheet resistance measurements (four-point probe), Rutherford back scattering (RBS), and X-ray diffraction (XRD). In addition the stability of the Schottky diodes, n-Si/CoS2/Cu, has been investigated as a function of the heat treatment in the range of room temperature to 600° C in argon-3% hydrogen mixture gas ambient. Both the measurements of the analytical and electrical characteristics show that Cu on n-Si/CoSi2 is stable at least up to a 30 minutes anneal at 600°C in argon-3% hydrogen medium. These results will be presented and discussed.


2021 ◽  
Author(s):  
Anubhav Jain ◽  
Oscar Saborío-Romano ◽  
Jayachandra Naidu Sakamuri ◽  
Nicolaos Antonio Cutululis

<div>The changing energy landscape due to the large scale integration of renewable energy and shutting down of conventional thermal plants has opened up the potential of alternate sources in the blackstart services market. Grid forming wind turbines can do controlled islanded operation independent of an external grid voltage and thus, participate in network restoration from the start. However, it is necessary to study the capability of wind turbines to deal with the demanding energization transients in a controlled and stable manner. This work investigates the feasibility of using virtual resistance in the wind turbine converter control to reduce transients during self-transformer inrush and sympathetic interaction from downstream string transformers. This can eliminate the need for pre-insertion resistors during sequential energization. The sensitivity of the AC current and voltage output along with DC link transient to the virtual resistance parameters has also been analyzed using PSCAD simulations. Finally the effectiveness of the proposed method for offshore network energization by a grid forming wind power plant has been tested by comparing to results for a pre-insertion resistor.</div>


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1425 ◽  
Author(s):  
Elyas Rakhshani ◽  
Kumars Rouzbehi ◽  
Adolfo J. Sánchez ◽  
Ana Cabrera Tobar ◽  
Edris Pouresmaeil

This paper reports a general overview of current research on analysis and control of the power grid with grid scale PV-based power generations as well as of various consequences of grid scale integration of PV generation units into the power systems. Moreover, the history of PV renewable growth, deregulation of power system and issues related to grid-connected PV systems considering its contribution to various responsibilities like frequency control, virtual inertia capabilities and voltage regulation are discussed. Moreover, various outcomes of the high-penetrated grid with PV power plants such as power quality, active and reactive power control, protection, balancing and reliability under various loading conditions are reviewed and discussed.


2020 ◽  
Vol 11 (1) ◽  
pp. 1-3
Author(s):  
Mohanad Abdulhamid ◽  
Koech Benard

AbstractThe use of energy in the world today is increasing with increase in population. The cost and availability of energy significantly impacts our quality of life, the health of national economies and the stability of our environment. The rapid depletion of fossil fuel resources on a worldwide basis has necessitated an urgent search for alternative energy sources to cater to the present day demands. In recent years there has been a significant global commitment to develop clean and alternative sources of energy such as solar and wind. Wind energy technology has been the fastest growing energy source because it is fairly distributed around the world and readily available for use. However, more penetration of wind energy into existing power networks has some impacts on the stability of the power system. Therefore, this paper studies and analyzes the stability of a power system with increasing wind penetration. The paper presents some analyses of a power system and the dynamic behavior which identify the issues that limit the large-scale integration of wind generators in a power system.


2019 ◽  
Author(s):  
Uros Markovic ◽  
Ognjen Stanojev ◽  
Evangelos Vrettos ◽  
Petros Aristidou ◽  
Gabriela Hug

A large-scale integration of renewable generation,usually interfaced to the network through power electronics,has led to an overall decrease in power system inertia. This paper presents novel insights on the fundamental stability properties of such systems. For that purpose, a uniform set of Differential-Algebraic Equations (DAEs) describing a generic,low-inertia power system has been developed. A full-order, state-of-the-art control scheme of both synchronous and converter-based generators are included, with the latter differentiating between the grid-forming and grid-following mode of operation. Furthermore, the dynamics of transmission lines and loads are captured in the model. Using modal analysis techniques such as participation factors and parameter sensitivity, we determine the most vulnerable segments of the system and investigate the adverse effects of the underlying control interference. Finally, the appropriate directions for improving the system stability margin under different generation portfolios have been proposed.


2021 ◽  
Author(s):  
Anubhav Jain ◽  
Oscar Saborío-Romano ◽  
Jayachandra Naidu Sakamuri ◽  
Nicolaos Antonio Cutululis

<div>The changing energy landscape due to the large scale integration of renewable energy and shutting down of conventional thermal plants has opened up the potential of alternate sources in the blackstart services market. Grid forming wind turbines can do controlled islanded operation independent of an external grid voltage and thus, participate in network restoration from the start. However, it is necessary to study the capability of wind turbines to deal with the demanding energization transients in a controlled and stable manner. This work investigates the feasibility of using virtual resistance in the wind turbine converter control to reduce transients during self-transformer inrush and sympathetic interaction from downstream string transformers. This can eliminate the need for pre-insertion resistors during sequential energization. The sensitivity of the AC current and voltage output along with DC link transient to the virtual resistance parameters has also been analyzed using PSCAD simulations. Finally the effectiveness of the proposed method for offshore network energization by a grid forming wind power plant has been tested by comparing to results for a pre-insertion resistor.</div>


Sign in / Sign up

Export Citation Format

Share Document