scholarly journals Cuttings Transport Using Pulsed Drilling Fluid in the Horizontal Section of the Slim-Hole: An Experimental and Numerical Simulation Study

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3939 ◽  
Author(s):  
Xiaohua Zhu ◽  
Keyu Shen ◽  
Bo Li ◽  
Yanxin Lv

Poor transport of cuttings in horizontal sections of small-bore well holes leads to high torque and increases the risk of the drill becoming stuck, reducing its service life and posing a threat to safe operation. Because the conventional cuttings transport method cannot effectively remove the cuttings bed, a transport method using pulsed drilling fluid based on a shunt relay mechanism is proposed. A three-layer numerical simulation model of cuttings transport in horizontal small-bore wells is established. Using both experiments and numerical simulations, the cuttings transport is studied in terms of the moving cuttings velocity, cuttings concentration, and distance of movement of the cuttings bed. By varying the pulsed drilling fluid velocity cycle, amplitude, and duty cycle at the annulus inlet, their effects on cuttings transport are analyzed, and the optimal pulse parameters are determined. The results show that the use of pulsed drilling fluid can effectively enhance the moving cutting velocity and transport distance of the cuttings bed, reduce the cuttings concentration, and improve wellbore cleaning.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1644
Author(s):  
Camilo Pedrosa ◽  
Arild Saasen ◽  
Bjørnar Lund ◽  
Jan David Ytrehus

The cuttings transport efficiency of various drilling fluids has been studied in several approaches. This is an important aspect, since hole cleaning is often a bottleneck in well construction. The studies so far have targeted the drilling fluid cuttings’ transport capability through experiments, simulations or field data. Observed differences in the efficiency due to changes in the drilling fluid properties and compositions have been reported but not always fully understood. In this study, the cuttings bed, wetted with a single drilling fluid, was evaluated. The experiments were performed with parallel plates in an Anton Paar Physica 301 rheometer. The results showed systematic differences in the internal friction behaviors between tests of beds with oil-based and beds with water-based fluids. The observations indicated that cutting beds wetted with a polymeric water-based fluid released clusters of particles when external forces overcame the bonding forces and the beds started to break up. Similarly, it was observed that an oil-based fluid wetted bed allowed particles to break free as single particles. These findings may explain the observed differences in previous cutting transport studies.


Author(s):  
Shihui Sun ◽  
Jinyu Feng ◽  
Zhaokai Hou ◽  
Guoqing Yu

Cuttings are likely to accumulate and eventually form a cuttings bed in the highly-deviated section, which usually lead to high friction and torque, slower rate of penetration, pipe stuck and other problems. It is therefore necessary to study cuttings transport mechanism and improve hole cleaning efficiency. In this study, the cuttings-transport behaviors with pipe rotation under turbulent flow conditions in the highly deviated eccentric section were numerically simulated based on Euler solid–fluid model and Realizable [Formula: see text]–[Formula: see text] model. The resulted numerical results were compared with available experimental data in reported literature to validate the algorithm, and good agreement was found. Under the conditions of drill string rotation, cuttings bed surface tilts in the direction of rotation and distributes asymmetrically in annulus. Drill string rotation, drilling fluid flow rate, cuttings diameter, cuttings injection concentration and drilling fluid viscosity affect the axial velocity of drilling fluid; whereas drilling fluid tangential velocity is mainly controlled by the rotational speed of drill string. Increase in value of drill string rotation, drilling fluid flow rate or hole inclination will increase cuttings migration velocity. Notably, drill string rotation reduces cuttings concentration and solid–fluid pressure loss, and their variations are dependent on inclination, cuttings injection concentration, cuttings diameter, drilling fluid velocity and viscosity. However, when a critical rotation speed is reached, no additional contribution is observed. The results can provide theoretical support for optimizing hole cleaning and realizing safety drilling of horizontal wells and extended reach wells.


2011 ◽  
pp. 1-14 ◽  
Author(s):  
Ali Piroozian ◽  
Issham Ismail

Lencongan dari laluan tegak menyebabkan rincisan gerudi berkumpul pada bahagian bawah lubang telaga sehingga terbentuknya lapisan rincisan. Akibatnya, berlaku beberapa permasalahan operasi ketika berlangsungnya penggerudian. Daya seret dan kilas yang melampau, kesukaran yang dialami ketika penyorongan rentetan selongsong ke dalam lubang telaga, kesukaran untuk memperoleh operasi penyimenan yang baik, dan lekatan mekanikal paip gerudi adalah antara beberapa contoh lazim yang berkaitan dengan permasalahan terbabit. Sehubungan itu, pemahaman yang baik tentang parameter utama operasi yang mempengaruhi pembersihan lubang telaga adalah penting. Artikel ini mengetengahkan keputusan daripada kajian makmal yang telah dilaksanakan untuk menilai keberkesanan tiga jenis bendalir gerudi dalam menyingkir rincisan gerudi. Kajian makmal melibatkan penggunaan gelung legap aliran sepanjang 17 kaki dengan diameter 2 inci sebagai bahagian ujian. Bagi setiap uji kaji, prestasi pengangkutan rincisan (CTP - Cuttings Transport Performance) ditentukan menerusi pengukuran berat. Keputusan uji kaji dianalisis untuk memperoleh kesan menyeluruh ketiga-tiga parameter operasi, iaitu kelikatan bendalir gerudi, halaju bendalir, dan kecondongan lubang telaga. Kajian terkini membuktikan bahawa penggunaan bendalir gerudi berkelikatan tinggi berupaya meningkatkan CTP jika regim aliran adalah gelora. Walau bagaimanapun, peningkatan kelikatan dalam regim aliran peralihan atau laminar masing-masing mengurangkan CTP secara beransur atau mendadak. Kajian juga menunjukkan bahawa peningkatan sudut kecondongan dari 60° ke 90° memberikan kesan yang positif terhadap CTP. Parameter operasi yang memberikan kesan yang ketara dalam kajian ini ialah halaju aliran, dengan peningkatan kecil yang dialami oleh halaju aliran berjaya memberikan kesan positif yang nyata dalam pembersihan lubang telaga. Kata kunci: Kecekapan penyingkiran rincisan; prestasi pengangkutan rincisan; rincisan gerudi; bendalir gerudi; pembersihan lubang telaga Deviation from vertical path makes drill cuttings to accumulate on the lower side of the wellbore that induces the formation of cuttings bed. Subsequently, relative problems occur while drilling. Excessive torque and drag, difficulties in running casing in hole and accomplishing good cementing jobs and mechanical pipe sticking are few of the classical examples of such problems. Therefore, a comprehensive understanding of influential parameters on hole cleaning seems to be essential. This paper presents results of an experimental study that was carried out to evaluate cuttings removal efficiency of three types of drilling fluid. Experiments were conducted using a 17 feet long opaque flow loop of 2 inch diameter as test section. For each test, the amount of cuttings transport performance (CTP) was determined from weight measurements. Three operating parameters were considered, namely drilling fluid viscosity, fluid velocity, and hole inclination. It showed that the use of high-viscosity drilling fluid improved CTP if the flow regime was turbulent. However, increasing viscosity when flow regime was transient or laminar flow lessened CTP gradually or sharply respectively. It was also revealed that an incremental increase in hole inclination from 60° to 90° has a positive effect on CTP. The most influential parameter in this study was fluid velocity in which a small raise of fluid velocity resulted in a substantial positive effect on hole cleaning. Key words: Cuttings removal efficiency; cuttings transport performance; drill cuttings; drilling fluid; hole cleaning


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2141
Author(s):  
Xiaohua Zhu ◽  
Keyu Shen ◽  
Bo Li

Due to gravity, drilling cuttings are easily accumulated in an inclined well section, ultimately forming a cuttings bed, which places the drill pipe under strong friction torque. In severe cases, this can cause dragging, stuck drills, and broken drill tools. Because conventional drilling fluids are difficult to prevent the formation of cuttings in inclined well sections, a method of carrying cuttings with the pulsed drilling fluid to improve wellbore cleanness is proposed. Experiments and numerical simulations are conducted to investigate the effects of cuttings bed transport velocity, cuttings size, cuttings height, drill pipe rotation speed, cuttings bed mass, and roughness height. The optimal pulse parameters are determined per their respective impact on cuttings transport concerning varied periods, amplitudes, and duty cycles of the pulsed drilling fluid. Compared to cuttings transport under the conventional drilling fluid flow rate, the pulsed drilling fluid produces the turbulent dissipation rate, increases cuttings transport velocity, and thus improves the wellbore clearance rate.


Author(s):  
Yaroslav Ignatenko ◽  
Oleg Bocharov ◽  
Andrey Gavrilov ◽  
Roland May

The paper presents the results of modeling the steady-state flow of drilling fluid with cuttings in an annulus for the flow regimes typical for horizontal drilling. The studied parameters include effects like fluid rheology, drillstring rotation and eccentricity on flow regime, pressure drop and cuttings bed. It has been demonstrated that increasing the drilling fluid’s effective viscosity increases the pressure drop, but it decreases the cuttings bed area, while drillstring rotation significantly changes the flow structure, improving cuttings transport and reducing the pressure drop. The considered flow structure can change abruptly due to changed drill string positioning and rheological fluid properties. Such structural changes are followed by abrupt changes in the pressure drop and cuttings bed area.


2012 ◽  
Vol 524-527 ◽  
pp. 1314-1317 ◽  
Author(s):  
Ying Ying Li ◽  
Guan Cheng Jiang ◽  
Ling Li ◽  
Wei Xing Xu ◽  
Zhi Heng Zhao

Aiming at the cutting bed settling problems in horizontal section during drilling process, a novel additive FGC for cuttings transport is applied. The experimental results show that the wettability was converted to amphiphobic and the cuttings preferentially attached to gas bubbles after FGC adsorption on the cuttings’ surface. The surface area of the cuttings is increased and the density of it is reduced, making cuttings more easily to be driven by liquid and settlement decrease. Tested by the horizontal simulation device, the cuttings transport effect is good and most of cuttings can be circulated to the outlet position by drilling fluid.


Author(s):  
Jie Zhang ◽  
Wen Luo ◽  
Cuinan Li ◽  
Tingyu Wan ◽  
Zhen Zhang ◽  
...  

Based on the special rheological model of foam fluid, the mathematical models of cuttings transport for stable foam drilling in vertical/near vertical sections, the transitional section, and inclined/horizontal sections are established in this paper. The effects of various flow parameters on the cuttings bed thickness in the annulus are analyzed. The results show that inclination, annulus velocity, foam flow rate, and eccentricity are key factors affecting cuttings transport. The thickness of a cuttings bed gradually decreases with the inclination decrease of the highly deviated/horizontal sections. When the inclination is reduced to approximately 60°, the dynamic and static cuttings bed disappears and is substituted by the glide lamella, which consists of cuttings grains. Cuttings grains have various forms of movement on the lower borehole wall. When the inclination is reduced to below 30°, the cuttings are brought out of the well by the stable foam if the returning velocity of the annulus foam is larger than the depositing velocity of the cuttings. The thickness of the cuttings bed gradually decreases with the increase of annulus velocity. The increased foam quality reduces the concentration of annulus cuttings when the annulus velocity is constant and when it reaches a stable status earlier than the foam drilling fluid of lower foam quality. However, the concentration of the annulus cuttings at the final stage is constant. The thickness of the cuttings bed increases with increased eccentricity of the drill stem. When the eccentricity is large, the change of eccentricity has a high effect on the cuttings bed thickness.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 545
Author(s):  
Camilo Pedrosa ◽  
Arild Saasen ◽  
Jan David Ytrehus

The increasing necessity of challenging wellbore structures and drilling optimization for improved hole cuttings cleaning has been growing along time. As a result, operator companies have been researching and applying different hole cleaning techniques. Some of these are applied as traditional rules of thumb but are not always suitable for the new and up-coming challenges. This may result in inefficient hole cleaning, non-productive times, pipe stocking and low rate of penetration (ROP), among other problems. Here are presented some results and improvements for hole cleaning optimization obtained by the different research groups. The different authors mainly focus on specific cuttings transport parameters and sometimes combination of some of them. For this reason, there has not been a study that takes into account all of the different factors at the same time to accurately predict the cuttings bed height, formation and erosion, critical fluid velocity and properties and other key parameters. Consequently, there is a lack of understanding about the relation between different factors, such as the cohesiveness of the drilled cuttings with the different interstitial drilling fluids within the cuttings-bed. This relation can be analyzed establishing a wet-granular approach to obtain more efficient cuttings transport mechanism in challenging conditions.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Shi Huaizhong ◽  
Zhao Heqian ◽  
Ji Zhaosheng ◽  
Li Jingbin ◽  
Hou Xinxu ◽  
...  

With the development of petroleum industry, it needs an efficient drill method such as under balanced drilling (UBD) to enhance the rate of penetration (ROP). However, borehole instability is a problem that UBD must face. The coiled tubing partial underbalanced drilling (CT-PUBD) is proposed to try to solve this problem while keeping an underbalanced condition with high ROP. This paper analyzes the laws of cuttings transport in the narrow annulus focus on this new technique through the simulations and experiments. From the results of simulations, it obtains that the particle velocity declines with the increase of rotational speed and increases with the increase of flow rate. The particles become concentrated as the flow rate increases, and the high flow rate limits particles in a small area. The particle distribution undergoes a process of concentration, dispersion, and concentration as the rotational speed increases. The high rotational speed makes particles deviate from the high fluid velocity area, which causes low particle velocity. The relationships between particle velocity and rotational speed and between particle velocity and flow rate are fitted through the equations, respectively. The phenomenon of collision of particles, sinking and rising of particles, and variation of particle velocity are observed in the experiments. The error between the particle velocity in the experiment and numerical simulation is less than 8.5%. This paper is an exploratory study conducted for the cuttings transport in narrow annulus.


Sign in / Sign up

Export Citation Format

Share Document