A Novel Approach of Cuttings Transport with Bubbles in Horizontal Wells

2012 ◽  
Vol 524-527 ◽  
pp. 1314-1317 ◽  
Author(s):  
Ying Ying Li ◽  
Guan Cheng Jiang ◽  
Ling Li ◽  
Wei Xing Xu ◽  
Zhi Heng Zhao

Aiming at the cutting bed settling problems in horizontal section during drilling process, a novel additive FGC for cuttings transport is applied. The experimental results show that the wettability was converted to amphiphobic and the cuttings preferentially attached to gas bubbles after FGC adsorption on the cuttings’ surface. The surface area of the cuttings is increased and the density of it is reduced, making cuttings more easily to be driven by liquid and settlement decrease. Tested by the horizontal simulation device, the cuttings transport effect is good and most of cuttings can be circulated to the outlet position by drilling fluid.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jianyan Zou ◽  
Ping Chen ◽  
Tianshou Ma ◽  
Yang Liu ◽  
Xingming Wang

The excessive drag/torque and the backing pressure is an important factor that restricts the improvement of the penetration rate and the extension of the drilling in the sliding drilling process of extended-reach wells and horizontal wells. To deal with this problem, this paper developed a novel controllable hybrid steering drilling system (CHSDS) based on the friction-reducing principle of a rotating drill string. The CHSDS is composed of a gear clutch, hydraulic system, and measurement and control system. By controlling the meshing and separation of the clutch with the mud pulse signal, the CHSDS has two working states, which leads to two boundary conditions. Combined with the stiff-string drag torque model, the effects of the drilling parameters on the friction-reducing performance of the CHSDS are analyzed systematically. The results show that the friction reduction effect in the inclined section is the most significant, followed by that in the horizontal section, whereas there is almost no impact in the vertical section. Friction reduction increases with the rotary speed and the drilling fluid density, whereas it decreases with the increase in the surface weight-on-bit and the bit reaction torque. Field tests confirm the separation and meshing function of the CHSDS. The developed controllable hybrid steering and friction-reducing technology provides an alternative approach for the safe and high-efficiency drilling of horizontal wells.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 657 ◽  
Author(s):  
Qimin Liang ◽  
Bairu Xia ◽  
Baolin Liu ◽  
Zhen Nie ◽  
Baokui Gao

The multistage stimulation technology of horizontal wells has brought huge benefits to the development of oil and gas fields. However, the completion string with packers often encounters stuck due to the large drag in the horizontal section, causing huge economic losses. The local drag of the completion string with packers in the horizontal section is very complicated, and it has not been fully understood by theoretical calculations. A local drag experiment is designed to simulate the influence of microsteps and cuttings on the local drag of the completion string with packers in the inclined and horizontal sections. An obvious increase of the local drag of the packer is found at microsteps of the horizontal section, and the local drag is greatly affected by the amount of sand. In addition, the string with packers will vibrate during the tripping process in the deviated section, and the local drag is different when different amounts of sand are in the hole, but the change law is similar. The experimental results show that the friction coefficients of the packers with different materials in the horizontal section vary greatly, resulting in different local drags. It indicates that the local drag of the completion string not only depends on the microsteps and sand quantity in the wellbore, but also on the material difference of the packers. Only if microsteps and cuttings are removed can the completion string be tripped into horizontal wells smoothly.


2013 ◽  
Vol 781-784 ◽  
pp. 2861-2864
Author(s):  
Wan Long Huang ◽  
Yi Shan Lou ◽  
Xiao Yong Ma ◽  
Hai Min Xu ◽  
Qiang Wang

Daniudi Gas Field reservoir has low degree of porosity and permeability, thus it is highly susceptible to the invasion of the solid phase of clay particles in the drilling fluid during the drilling process, in view of these problems, we introduce the non-clay weak gel drilling fluid system. Experiments of the drilling fluid system for rheological property, salt-resisting pollution, hot rolling rate of recovery, reservoir damage evaluation and drilling fluid treating chemical opimization have been taken. The experimental results show that the drilling fluid system has excellent temperature-resisting and salt-resisting character, good ability of suspending debris and strong inhibitory action, its rheological property can meet the needs of the long horizontal section of drilling engineering and the reservoir protection effect is excellent. In DP21 well horizontal section construction, each performance indicator of the drilling fluid can be controlled well and effectively solve the problems of cuttings carrying, borehole wall stability and reservoir protection, successfully completed the DP21 well drilling construction task.


2012 ◽  
Vol 594-597 ◽  
pp. 226-229
Author(s):  
Kai Chun Yu ◽  
Yan Zhu ◽  
Xiao Xing Li ◽  
Shi Feng Zhang

The branch well G8-33-H1Z is the first fishbone horizontal well of Daqing. The fishbone horizontal well is one type of the branch horizontal wells, which drilling again two or more branch holes in the horizontal section of the horizontal well. This well lies in G21 block where is near to the west of Daqing oilfield Changyuan area and the northeast of G20 of the north Gaotaizi oilfield. The purpose of the drilling is using branch horizontal well to control more areal reserves and increasing drainable area to improve well production. This technique can improve the economic benefit of oilfield development, which saves drilling investment, makes full use of the upper borehole to improve the comprehensive exploitation degree of the reservoir and achieves highly efficient development using less well. This well has two horizontal branches, and puts ‘trunk-branch-trunk-branch’ into effect while drilling. The first branch designed horizontal length 150m. The second branch designed horizontal length 150m. This paper introduced the tracing with drilling process of Daqing first fishbone horizontal well, and also described the complex situations and the treatment methods while drilling wellbore trajectory and constructing well and the development effect. Finally some suggestions were put forward about tracing with drilling in fishbone horizontal well.


1998 ◽  
Vol 1 (03) ◽  
pp. 180-191 ◽  
Author(s):  
I.D. Bryant ◽  
B. Baygun ◽  
M.M. Herron ◽  
A. Matteson ◽  
R. Ramamoorthy ◽  
...  

Abstract The Lower Lagunillas of Bloque IV of the Bachaquero field is a supergiant reservoir that has been in production since 1956. We have carried out a pilot reservoir characterization study in the central part of the field, in which we have integrated all the available data into 3D reservoir simulation models whose purpose is to optimize redevelopment of the area with horizontal wells. An analysis of historical production was undertaken in order to gain an insight into the reservoir dynamics. This analysis indicated the inefficiency of gas injection in providing pressure support to the pilot study area and demonstrated the presence of active aquifer encroachment from the south. Anomalies in production behavior and fluid characteristics indicate both lateral and vertical compartmentalization of the reservoir. We have integrated Fourier Transform Infrared (FTIR) measurements of mineralogy from old cores with a comprehensive logging suite in a new well to re-evaluate older, sparse logging suites. Application of a mineral based log evaluation and high resolution processing of the new logs have led to a significant increase in estimates of oil initially in place in the study area. We have used a novel approach to estimate permeability in all of the study area wells. Combining these new evaluations with a revised geological model enabled us to recognize eleven geological layers throughout the area. Formation pressure measurements confirm that partial barriers to vertical communication exist between most of these layers. Cased hole saturation measurements and historical production data indicate uneven sweep of these layers such that five layers contain bypassed oil that could be recovered by horizontal wells. We have constructed very detailed simulation models that describe the lateral and vertical variation in petrophysical properties of each of these layers. These models have been used to select the optimum locations for horizontal wells and optimize the drilling sequence of these wells and their design. It is estimated that each of these wells could recover 1 to 1.5 million STB within five years. Introduction A pilot reservoir characterization study of the central part of Bloque IV of the Bachaquero field, Venezuela was jointly undertaken by Maraven and Schlumberger with the objectives of increasing both offtake rates and ultimate recovery from this mature field by re-development with strategically located horizontal wells. This paper outlines the way in which old and new data were combined to build predictive reservoir models to guide this strategic infill drilling. The first of the wells recommended by this study was drilled under an integrated service contract in which members of the Maraven and Schlumberger study teams participated in geosteering the horizontal section of the well. The Lower Lagunillas Reservoir The Lower Lagunillas Member constitutes the deepest member of the Miocene age Lagunillas Formation and has an average thickness of some 300 ft in Bloque IV. The reservoirs occur in a faulted synclinal trap between 8,100 ft and 11,400 ft subsea that is bounded to the east by the major Pueblo Viejo Fault and to the west by Fault VLC-70 (Fig. 1). The Lower Lagunillas reservoir of the southwestern part of the Bachaquero field was discovered in 1955. Early estimates suggested that about 2 billion stock-tank barrels (STB) of oil were initially in place in the Lower Lagunillas reservoir of Bloques III and IV. Production commenced from the reservoir in late 1956. Peak production of 215,000 BOPD was achieved in late 1959, from 65 wells (Fig. 2). Gas injection commenced in 1965, after production of 389 MMbbl had already caused significant pressure decline. Oil production in June 1992 was 25,200 BOPD, from 28 producing wells. At this time cumulative recovery was 890 MMbbl [45% of original oil in place (OIIP)], with remaining reserves estimated to be 289 MMbbl (13% of OIIP). Earlier Studies The reservoir has traditionally been subdivided into three units: L, M and N (Fig. 3). In most wells this subdivision was carried out on the basis of recognizing three sand units separated by shales. However, in some wells the M and N Sands are in direct communication.


Author(s):  
Ali Taghipour ◽  
Bjørnar Lund ◽  
Jan David Ytrehus

Borehole hydraulics, hole cleaning and mechanical friction are important factors for well planning and drilling operations. Many studies aim to exploit and optimize the effect of different operational parameters. The effect of wellbore geometry on hole cleaning and mechanical friction has so far not received much attention. This paper presents results from experimental laboratory tests where hydraulics, hole cleaning and mechanical friction have been investigated for circular and non-circular wellbore geometries with a relevant oil-based field drilling fluid (OBM). The non-circular wellbore geometry was made by adding spiral grooves to the wellbore walls in order to investigate the effects on cuttings transport and mechanical friction. The study contributes to describe the function and ability of deliberately induced non-circular geometry in wellbores as means to achieve a more efficient drilling and well construction. Improving hole cleaning will improve drilling efficiency in general, and will in particular enable longer reach for ERD wells. Reduced mechanical friction may improve the drilling process and many operations during the completion phase. The laboratory experiments were performed in an advanced flow loop setup reproducing field-relevant flow conditions. The flow loop consists of a 10 m long 4” inner diameter borehole made of concrete. A free whirling rotational string with 2” diameter provides a realistic down hole annular geometry. A field-relevant oil based drilling fluid (OBM) was circulated through the test section at different flow rates. To represent the effect of rate of penetration, synthetic drilling cuttings (quartz sand particles) were injected at different rates through the annulus in the horizontal test section. The test results show that borehole hydraulics and cutting transport properties are significantly improved in the non-circular wellbore relative to the circular wellbore. The effect of the mechanical friction is more complex, yet significantly different for the two geometries.


Author(s):  
Ali Taghipour ◽  
Bjørnar Lund ◽  
Jan David Ytrehus

Borehole hydraulics, hole cleaning and mechanical friction are important factors for well planning and drilling operations. Many studies aim to exploit and optimize the effect of different operational parameters. The effect of wellbore geometry on hole cleaning and mechanical friction has so far not received much attention. This paper presents results from experimental laboratory tests where hydraulics, hole cleaning and mechanical friction have been investigated for circular and non-circular wellbore geometries with a relevant oil-based field drilling fluid (OBM). The non-circular wellbore geometry was made by adding spiral grooves to the wellbore walls in order to investigate the effects on cuttings transport and mechanical friction. The study contributes to describe the function and ability of deliberately induced non-circular geometry in wellbores as means to achieve a more efficient drilling and well construction. Improving hole cleaning will improve drilling efficiency in general, and will in particular enable longer reach for ERD wells. Reduced mechanical friction may improve the drilling process and many operations during the completion phase. The laboratory experiments were performed in an advanced flow loop setup reproducing field-relevant flow conditions. The flow loop consists of a 10 m long 4″ inner diameter borehole made of concrete. A free whirling rotational string with 2″ diameter provides a realistic down hole annular geometry. A field-relevant oil based drilling fluid (OBM) was circulated through the test section at different flow rates. To represent the effect of rate of penetration, synthetic drilling cuttings (quartz sand particles) were injected at different rates through the annulus in the horizontal test section. The test results show that borehole hydraulics and cutting transport properties are significantly improved in the non-circular wellbore relative to the circular wellbore. The effect of the mechanical friction is more complex, yet significantly different for the two geometries.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3939 ◽  
Author(s):  
Xiaohua Zhu ◽  
Keyu Shen ◽  
Bo Li ◽  
Yanxin Lv

Poor transport of cuttings in horizontal sections of small-bore well holes leads to high torque and increases the risk of the drill becoming stuck, reducing its service life and posing a threat to safe operation. Because the conventional cuttings transport method cannot effectively remove the cuttings bed, a transport method using pulsed drilling fluid based on a shunt relay mechanism is proposed. A three-layer numerical simulation model of cuttings transport in horizontal small-bore wells is established. Using both experiments and numerical simulations, the cuttings transport is studied in terms of the moving cuttings velocity, cuttings concentration, and distance of movement of the cuttings bed. By varying the pulsed drilling fluid velocity cycle, amplitude, and duty cycle at the annulus inlet, their effects on cuttings transport are analyzed, and the optimal pulse parameters are determined. The results show that the use of pulsed drilling fluid can effectively enhance the moving cutting velocity and transport distance of the cuttings bed, reduce the cuttings concentration, and improve wellbore cleaning.


2021 ◽  
Author(s):  
Wajid Ali ◽  
Freddy Jose Mata ◽  
Faisal Abdullah Al-Turki

Abstract Maintaining zonal isolation is vital to well economics and productive life. Well integrity is becoming more challenging with the drilling of deeper, highly deviated, and horizontal wells worldwide. Oil companies are focused on to enhance the well productivity during drilling long horizontal wells in a harsh environment by achieving maximum accessible reservoir contact. These wellbore geometries incorporate additional challenges to design and deliver a dependable barrier. In this paper, a case study about cementing the longest liner across Khuff-C reservoir has been presented discussing the main challenges, engineering considerations, field implementation, results, and conclusions. The well was drilled horizontally across Khuff-C carbonates using oil-based drilling fluid. The 5-7/8-in open hole section was planned to be cemented in single stage, utilizing 8370 ft of a 4-1/2-in liner. Careful attention was paid to estimate the bottom hole circulating temperature, using the temperature modeling simulator. A 118-lbm/ft3 slurry was designed to keep the equivalent circulation density intact. Gas migration control additives were included in the slurry design to lower the slurry's transition time, in order to reduce the chances of gas migration through the cement slurry. The slurry was batch-mixed to ensure the homogeneity of the final slurry mixture. A reactive spacer was designed to improve the cement bonding from long term zonal isolation perspective. Additionally, the spacer was loaded with optimum amounts of surfactant package to serve as an aid to remove the mud and to water-wet the formation and pipe for better cement bonding. Centralizers placement plan was optimized to allow around 63% average standoff around the pipe, staying within the torque and drag (T&D) limits. The cement treatment was performed as designed and met all zonal isolation objectives. The process of cementing horizontal liners comes with unique procedures. There are several challenges associated with carrying out wellbore zonal isolation for primary cementing of horizontal liners, therefore, a unique level of attention is required during the design and execution stages. The slurry design requires careful formulation to achieve the desired specifications while ensuring its easy deployment and placement in the liner annulus. By planning in advance and following proven techniques, many of the problems associated with the running and cementing of deep and long horizontal liners can be alleviated. This paper highlights the necessary laboratory testing, field execution procedures, and treatment evaluation methods so that this technique can be a key resource for such operations in the future. The paper describes the process used to design the liner cement job and how its application was significant to the success of the job.


Sign in / Sign up

Export Citation Format

Share Document