scholarly journals Wave-to-Wire Model Development and Validation for Two OWC Type Wave Energy Converters

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3977 ◽  
Author(s):  
Pierre Benreguig ◽  
James Kelly ◽  
Vikram Pakrashi ◽  
Jimmy Murphy

The Tupperwave device is a closed-circuit oscillating water column (OWC) wave energy converter that uses non-return valves and two large fixed-volume accumulator chambers to create a smooth unidirectional air flow, harnessed by a unidirectional turbine. In this paper, the relevance of the Tupperwave concept against the conventional OWC concept, that uses a self-rectifying turbine, is investigated. For this purpose, wave-to-wire numerical models of the Tupperwave device and a corresponding conventional OWC device are developed and validated against experimental tests. Both devices have the same floating spar buoy structure and a similar turbine technology. The models include wave-structure hydrodynamic interaction, air turbines and generators, along with their control laws in order to encompass all power conversion stages from wave to electrical power. Hardware-in-the-loop is used to physically emulate the last power conversion stage from mechanic to electrical power and hence validate the control law and the generator numerical model. The dimensioning methodology for turbines and generators for power optimisation is explained. Eventually, the validated wave-to-wire numerical models of the conventional OWC and the Tupperwave device are used to assess and compare the performances of these two OWC type wave energy device concepts in the same wave climate. The benefits of pneumatic power smoothing by the Tupperwave device are discussed and the required efficiency of the non-return valves is investigated.

2013 ◽  
Vol 569-570 ◽  
pp. 595-602 ◽  
Author(s):  
William Finnegan ◽  
Jamie Goggins

A vital aspect of ensuring the cost effectiveness of wave energy converters (WECs) is being able to monitor their performance remotely through structural health monitoring, as these devices are deployed in very harsh environments in terms of both accessibility and potential damage to the devices. The WECs are monitored through the use of measuring equipment, which is strategically placed on the device. This measured data is then compared to the output from a numerical model of the WEC under the same ocean wave conditions. Any deviations would suggest that there are problems or issues with the WEC. The development of accurate and effective numerical models is necessary to minimise the number of times the visual, or physical, inspection of a deployed WEC is required. In this paper, a numerical wave tank model is, first, validated by comparing the waves generated to those generated experimentally using the wave flume located at the National University of Ireland, Galway. This model is then extended so it is suitable for generating real ocean waves. A wave record observed at the Atlantic marine energy test site has been replicated in the model to a high level of accuracy. A rectangular floating prism is then introduced into the model in order to explore wave-structure interaction. The dynamic response of the structure is compared to a simple analytical solution and found to be in good agreement.


Author(s):  
Eugen Rusu ◽  
C. Guedes Soares

The potential for wave energy extraction can be obtained from the analysis of the wave climate which can be determined with numerical models. The wave energy devices can be deployed in offshore, nearshore and shoreline. From this reason, it is important to be able to assess properly the spatial distribution of the wave energy in various locations from the offshore to the coastline in a specific area. The methodology proposed here considers a SWAN based wave model system focusing in the Portuguese continental coastal environment from deep water towards the nearshore. An analysis of the average and high energetic conditions was first performed for a ten-year period, between 1994 and 2003, considering the most relevant in situ measurements available in the Portuguese nearshore. In this way both the average and high energetic conditions corresponding to the Portuguese continental costal environment have been properly defined. For the most relevant average wave conditions, SWAN simulations were performed in some medium resolution areas covering the northern and central parts of Portugal continental, which are traditionally considered richer in wave power resources. The present work allows the identification of some locations in the continental coastal environment of Portugal with greater potential from the point of view of wave power resources. An important observation is related to the fact that the wave power depends on the product between the energy density spectrum and the group velocity of waves. This means that, although the significant wave height is a relevant parameter when assessing the wave power in a specific site, a location having in general higher wave heights is not necessarily also the richest in wave power.


Author(s):  
Milad Shadman ◽  
Segen F. Estefen ◽  
Claudio Alexis Rodriguez Castillo ◽  
Marcelo I. Lourenço

The Rio floating point absorber (FPA) is designed for a reference site located near an island offshore Rio de Janeiro. According to the reference site characteristics, a two-body floating point absorber concept design is chosen to convert ocean wave energy into electrical power. An innovative procedure aiming at finding an optimal shape adapted to predefined wave climate conditions, using the Design of Experiments (DOE) method, is applied. A simple linear damper model is used to represent the Power Take-Off (PTO) mechanism. The optimization procedure is divided into Buoy and support (spar/plate) steps, so the optimized buoy is determined first and then a proper support is determined to reach a satisfactory two-body FPA system. The nonlinearities are not considered in this study and linear Numerical models are developed using AQWA/ANSYS and Minitab software in frequency domain. Finally, a preliminary optimized model of the two-body FPA is determined in accordance with the particular sea site information of the Rio de Janeiro.


2020 ◽  
Vol 8 (3) ◽  
pp. 175 ◽  
Author(s):  
Bárbara F. V. Vieira ◽  
José L. S. Pinho ◽  
Joaquim A. O. Barros ◽  
José S. Antunes do Carmo

Coastal areas accommodate a great part of large metropolises as they support a great amount of economic and leisure activities. The attraction of people to coastal zones is contributing to an intense and continuous urbanization of these areas, while the ecosystems are threatened by the increase of natural extreme weather events (e.g., intensity and duration of storms, floods), which interfere with local wave climate and changes in morphological beach characteristics. Protection of coastal zones predisposed to coastline recession, due to the action of high tides, high sediment transport deficit, and high wave energy, may involve various coastal structures to reduce or at least to mitigate coastal erosion problems. Many of the current coastal protections (notably groins, seawalls, and emerged breakwaters) were built with a single purpose, which was to protect at all costs without environmental or economic concerns, especially maintenance costs, or the negative consequences that such structures could cause up to considerable distances along the coast. The current concept of integrated coastal zone management presupposes studies involving other types of concerns and more actors in the decision-making process for the implementation of coastal works. In this context, multifunctional structures emerge and are increasingly frequent, such as the so-called multifunctional artificial reefs (MFARs), with the aim of improving leisure, fishing, diving, and other sporting activities, in addition to coastal protection. MFARs are in fact one of the latest concepts for coastal protection. Behind the search for more efficient and sustainable strategies to deal with coastal retreat, this study focused on a comparison between the performance of two traditional coastal protection solutions (submerged detached breakwater and emerged detached breakwater) and an MFAR on a particular coastal stretch. In order to analyse the hydro- (wave height and wave energy dissipation) and morphodynamics (sediment accumulation and erosion areas, and bed level) of the structures and beach interactions, two numerical models were used: SWAN (Simulation WAves Nearshore) for hydrodynamics and XBeach for hydrodynamics and morphodynamics. In addition, a comparison between SWAN and XBeach hydrodynamic results was also performed. From the simulations conducted by SWAN and XBeach, it can be concluded that amongst all structures, the emerged detached breakwater was the most efficient in reducing significant wave heights at a larger scale due to the fact that it constituted a higher obstacle to the incoming waves, and that, regarding both submerged structures (detached breakwater and the MFAR), the MFAR presented a more substantial shadow zone. Regarding morphodynamics, the obtained results presented favourable tendencies to sediment accretion near the shoreline, as well as at the inward areas for the three structures, especially for the emerged detached breakwater and for the MFAR in both wave directions. However, for the west wave direction, along the shoreline, substantial erosion was observed for both structures with more noticeable values for the emerged detached breakwater. For all the northwest wave direction scenarios, no noticeable erosion areas were visible along the shoreline. Overall, considering the balance of erosion and accretion rates, it can be concluded that for both wave predominance, the submerged detached breakwater and the MFAR presented better solutions regarding morphodynamics. The MFAR storm wave condition performed in XBeach indicated substantial erosion areas located around the structure, which added substantial changes in the bed level.


Author(s):  
Patricio Mona´rdez ◽  
Hugo Acun˜a ◽  
Doug Scott

In Chile, incentives have been created during the past years for the installation of non-conventional renewable energy plants (NCRE). It is within this context that wave energy can be transformed into a feasible alternative for electrical power generation in the near future within the country. This work corresponds to the first approach to quantify the wave energy resources in Chile based in a technically superior manner. The first step in the assessment of a wave energy plant is to quantify the available resources, therefore the wave climate was obtained for various sites along the Chilean coastline and a deterministic assessment was made of the power of the waves and their main characteristics, especially the variability under different time horizons. In order to convert the mechanical energy of the waves into electrical power, an assessment was made of various offshore devices existing on the market. An estimate was made of the output power of these conversion devices based on the wave climate and on the energy conversion matrixes that define them, performing an analysis that is completely analogue to that of wave power. Waves in the Chilean coast arrive year in and year out with scarce variation during the various seasons, are very regular, with low directional dispersion and high periods. This determines the low seasonal variability of the power and the high capacity factors that conversion devices can develop. The characteristics of waves in Chile are due mainly to the presence of swell usually found in great oceans, which makes Chilean territory one of the most appropriate sites in the world for the generation of electrical power with energy from the waves.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3482
Author(s):  
Ruth Branch ◽  
Gabriel García-Medina ◽  
Zhaoqing Yang ◽  
Taiping Wang ◽  
Fadia Ticona Rollano ◽  
...  

Wave-generated power has potential as a valuable coastal resource, but the wave climate needs to be mapped for feasibility before wave energy converters are installed. Numerical models are used for wave resource assessments to quantify the amount of available power and its seasonality. Alaska is the U.S. state with the longest coastline and has extensive wave resources, but it is affected by seasonal sea ice that dampens the wave energy and the full extent of this dampening is unknown. To accurately characterize the wave resource in regions that experience seasonal sea ice, coastal wave models must account for these effects. The aim of this study is to determine how the dampening effects of sea ice change wave energy resource assessments in the nearshore. Here, we show that by combining high-resolution sea ice imagery with a sea ice/wave dampening parameterization in an unstructured grid, the Simulating Waves Nearshore (SWAN) model improves wave height predictions and demonstrates the extent to which wave power decreases when sea ice is present. The sea ice parametrization decreases the bias and root mean square errors of wave height comparisons with two wave buoys and predicts a decrease in the wave power of up to 100 kW/m in areas around Prince William Sound, Alaska. The magnitude of the improvement of the model/buoy comparison depends on the coefficients used to parameterize the wave–ice interaction.


2018 ◽  
Vol 173 ◽  
pp. 692-703 ◽  
Author(s):  
Claudio A. Rodríguez ◽  
Paulo Rosa-Santos ◽  
Francisco Taveira-Pinto

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1137
Author(s):  
Philip Balitsky ◽  
Nicolas Quartier ◽  
Vasiliki Stratigaki ◽  
Gael Verao Fernandez ◽  
Panagiotis Vasarmidis ◽  
...  

In this study, a series of modules is integrated into a wave-to-wire (W2W) model that links a Boundary Element Method (BEM) solver to a Wave Energy Converter (WEC) motion solver which are in turn coupled to a wave propagation model. The hydrodynamics of the WECs are resolved in the wave structure interaction solver NEMOH, the Power Take-off (PTO) is simulated in the WEC simulation tool WEC-Sim, and the resulting perturbed wave field is coupled to the mild-slope propagation model MILDwave. The W2W model is run for verified for a realistic wave energy project consisting of a WEC farm composed of 10 5-WEC arrays of Oscillating Surging Wave Energy Converters (OSWECs). The investigated WEC farm is modelled for a real wave climate and a sloping bathymetry based on a proposed OSWEC array project off the coast of Bretagne, France. Each WEC array is arranged in a power-maximizing 2-row configuration that also minimizes the inter-array separation distance d x and d y and the arrays are located in a staggered energy maximizing configuration that also decreases the along-shore WEC farm extent. The WEC farm power output and the near and far-field effects are simulated for irregular waves with various significant wave heights wave peak periods and mean wave incidence directions β based on the modelled site wave climatology. The PTO system of each WEC in each farm is modelled as a closed-circuit hydraulic PTO system optimized for each set of incident wave conditions, mimicking the proposed site technology, namely the WaveRoller® OSWEC developed by AW Energy Ltd. The investigation in this study provides a proof of concept of the proposed W2W model in investigating potential commercial WEC projects.


Author(s):  
Johannes Falnes

Many of the various proposed wave-energy converter (WEC) units are immersed oscillating bodies, which, in the primary conversion stage, collect input power as the product of two oscillating factors, a velocity and wave-induced force. The latter factor is vulnerable to destructive wave interference, unless the extension of each WEC unit is sufficiently small. Two simple, elementary-mathematical, inequalities express two kinds of upper bounds for the wave power that may be absorbed by an oscillating immersed body. The first upper bound, published in the mid 1970s, is well-known, in contrast to the second one, Budal’s upper bound, which was derived a few years later, and which takes the WEC’s hull volume into consideration. Combining the two different upper bounds and considering also a typical wave climate, we may conclude that for a WEC array plant deployed in the North Atlantic, each point-absorber WEC unit volume should typically be about 300 cubic metre, and its primary-converted power take-off (PTO) capacity should be in the range of 50 to 300 kW. These heaving WEC units, being monopole wave radiators, may have a much higher PTO-capacity-to-immersed-hull-wet-surface ratio than any other type of WEC unit, such as those using dipole-mode (e.g. surge- or pitch-mode) radiation. For large-scale utilization of wave energy, arrays of WEC units are required.


Sign in / Sign up

Export Citation Format

Share Document