Wave-Energy Conversion Avoiding Destructive Wave Interference

Author(s):  
Johannes Falnes

Many of the various proposed wave-energy converter (WEC) units are immersed oscillating bodies, which, in the primary conversion stage, collect input power as the product of two oscillating factors, a velocity and wave-induced force. The latter factor is vulnerable to destructive wave interference, unless the extension of each WEC unit is sufficiently small. Two simple, elementary-mathematical, inequalities express two kinds of upper bounds for the wave power that may be absorbed by an oscillating immersed body. The first upper bound, published in the mid 1970s, is well-known, in contrast to the second one, Budal’s upper bound, which was derived a few years later, and which takes the WEC’s hull volume into consideration. Combining the two different upper bounds and considering also a typical wave climate, we may conclude that for a WEC array plant deployed in the North Atlantic, each point-absorber WEC unit volume should typically be about 300 cubic metre, and its primary-converted power take-off (PTO) capacity should be in the range of 50 to 300 kW. These heaving WEC units, being monopole wave radiators, may have a much higher PTO-capacity-to-immersed-hull-wet-surface ratio than any other type of WEC unit, such as those using dipole-mode (e.g. surge- or pitch-mode) radiation. For large-scale utilization of wave energy, arrays of WEC units are required.

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 460
Author(s):  
Takvor H. Soukissian ◽  
Flora E. Karathanasi

In the context of wave resource assessment, the description of wave climate is usually confined to significant wave height and energy period. However, the accurate joint description of both linear and directional wave energy characteristics is essential for the proper and detailed optimization of wave energy converters. In this work, the joint probabilistic description of wave energy flux and wave direction is performed and evaluated. Parametric univariate models are implemented for the description of wave energy flux and wave direction. For wave energy flux, conventional, and mixture distributions are examined while for wave direction proven and efficient finite mixtures of von Mises distributions are used. The bivariate modelling is based on the implementation of the Johnson–Wehrly model. The examined models are applied on long-term measured wave data at three offshore locations in Greece and hindcast numerical wave model data at three locations in the western Mediterranean, the North Sea, and the North Atlantic Ocean. A global criterion that combines five individual goodness-of-fit criteria into a single expression is used to evaluate the performance of bivariate models. From the optimum bivariate model, the expected wave energy flux as function of wave direction and the distribution of wave energy flux for the mean and most probable wave directions are also obtained.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2020 ◽  
Author(s):  
Yana Saprykina ◽  
Sergey Kuznetsov

An analysis of the variability of wave climate and energy within the Black Sea for the period 1960–2011 was made using field data from the Voluntary Observing Ship Program. Methods using wavelet analysis were applied. It was determined that the power flux of wave energy in the Black Sea fluctuates: the highest value is 4.2 kW/m, the lowest is 1.4 kW/m. Results indicate significant correlations among the fluctuations of the average annual wave heights, periods, the power flux of wave energy, and teleconnection patterns of the North Atlantic Oscillation (NAO), the Atlantic Multi-decadal Oscillation (AMO), the Pacific Decadal Oscillation (PDO) and the East Atlantic/West Russia (EA/WR). It was revealed that, in positive phases of long-term periods of AMO (50–60 years) as well as PDO, NAO, and AO (40 years), a decrease of wave energy was observed; however, an increase in wave energy was observed in the positive phase of a 15-year period of NAO and AO. The positive phase of changes of EA/WR for periods 50–60, 20–25, and 13 years led to an increase of wave energy. The approximation functions of the oscillations of the average annual wave heights, periods, and the power flux of wave energy for the Black Sea are proposed.


1980 ◽  
Vol 1 (17) ◽  
pp. 139
Author(s):  
Volker Barthel

A field investigation program on waves in the Weser Estuary, German Bight of the North Sea, was started to learn about the complex wave climate in this region. The comparison of results in the various locations shows that most of the' wave energy is transferred from deep water across the reef region to the wadden area. The comparison of spectra in the different sites and the parametrization of these multipeak- spectra gives another feasibility to describe estuarine waves.


2019 ◽  
Vol 16 ◽  
pp. 11-29 ◽  
Author(s):  
Emily Gleeson ◽  
Colm Clancy ◽  
Laura Zubiate ◽  
Jelena Janjić ◽  
Sarah Gallagher ◽  
...  

Abstract. The Northeast Atlantic possesses an energetic and variable wind and wave climate which has a large potential for renewable energy extraction; for example along the western seaboards off Ireland. The role of surface winds in the generation of ocean waves means that global atmospheric circulation patterns and wave climate characteristics are inherently connected. In quantifying how the wave and wind climate of this region may change towards the end of the century due to climate change, it is useful to investigate the influence of large scale atmospheric oscillations using indices such as the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA) and the Scandinavian pattern (SCAND). In this study a statistical analysis of these teleconnections was carried out using an ensemble of EC-Earth global climate simulations run under the RCP4.5 and RCP8.5 forcing scenarios, where EC-Earth is a European-developed atmosphere ocean sea-ice coupled climate model. In addition, EC-Earth model fields were used to drive the WAVEWATCH III wave model over the North Atlantic basin to create the highest resolution wave projection dataset currently available for Ireland. Using this dataset we analysed the correlations between teleconnections and significant wave heights (Hs) with a particular focus on extreme ocean states using a range of statistical methods. The strongest, statistically significant correlations exist between the 95th percentile of significant wave height and the NAO. Correlations between extreme Hs and the EA and SCAND are weaker and not statistically significant over parts of the North Atlantic. When the NAO is in its positive phase (NAO+) and the EA and SCAND are in a negative phase (EA−, SCAND−) the strongest effects are seen on 20-year return levels of extreme ocean waves. Under RCP8.5 there are large areas around Ireland where the 20-year return level of Hs increases by the end of the century, despite an overall decreasing trend in mean wind speeds and hence mean Hs.


Author(s):  
Roxana Tiron ◽  
Sarah Gallagher ◽  
Kenneth Doherty ◽  
Emmanuel G. Reynaud ◽  
Frédéric Dias ◽  
...  

Even though the outstanding energy resource provided by ocean surface waves has long been recognized, the extraction of wave power is still in its infancy. Meanwhile, the increased interest in sustainable energy alternatives could lead to large-scale deployments of wave energy convertors (WECs) worldwide in the near future. In this context, the interaction of WECs with the marine environment is an issue that has come under increased scrutiny. In particular, the accumulation of biological deposits on the device (commonly referred to as biofouling) could lead to a modification in the behaviour and performance of the device design. For coastal devices in the North-Eastern Atlantic region, the main contributors to biofouling are likely to be the brown algae from the genus Laminaria. In the experimental study described in this paper, we have investigated the effects of algal growth on a scale model of the Oyster 800 WEC, a technology developed by Aquamarine Power. The experiments were carried out in the wave tank at Queens University Belfast. The algal growth on the device has been emulated with plastic stripes attached on the surface of the device. Several configurations with various placements and stripe dimensions were tested, in sea states typical to the targeted deployment sites. Our experiments were designed as a worst-case scenario and provide first insights into the potential effects of biofouling on the performance of a WEC. The experiments indicate that the effects of biofouling could be significant and suggest the need for further investigation.


2015 ◽  
Vol 71 (2) ◽  
pp. I_1525-I_1530
Author(s):  
Tomoya SHIMURA ◽  
Nobuhito MORI ◽  
Mark A. HEMER ◽  
Tomohiro YASUDA ◽  
Hajime MASE

2021 ◽  
Vol 9 (9) ◽  
pp. 922
Author(s):  
Daniel Clemente ◽  
Tomás Calheiros-Cabral ◽  
Paulo Rosa-Santos ◽  
Francisco Taveira-Pinto

Seaports’ breakwaters serve as important infrastructures capable of sheltering ships, facilities, and harbour personnel from severe wave climate. Given their exposure to ocean waves and port authorities’ increasing awareness towards sustainability, it is important to develop and assess wave energy conversion technologies suitable of being integrated into seaport breakwaters. To fulfil this goal whilst ensuring adequate sheltering conditions, this paper describes the performance and stability analysis of the armour layer and toe berm of a 1/50 geometric scale model of the north breakwater extension project, intended for the Port of Leixões, with an integrated hybrid wave energy converter. This novel hybrid concept combines an oscillating water column and an overtopping device. The breakwater was also studied without the hybrid wave energy device as to enable a thorough comparison between both solutions regarding structural stability, safety, and overtopping performance. The results point towards a considerable reduction in the overtopping volumes through the integration of the hybrid technology by an average value of 50%, while the stability analysis suggests that the toe berm of the breakwater is not significantly affected by the hybrid device, leading to acceptable safety levels. Even so, some block displacements were observed, and the attained stability numbers were slightly above the recommended thresholds from the literature. It is also shown that traditional damage assessment parameters should be applied with care when non-conventional structures are analysed, such as rubble-mound breakwaters with integrated wave energy converters.


2021 ◽  
Author(s):  
Cole Burge ◽  
Nathan Tom ◽  
Krish Thiagarajan ◽  
Jacob Davis ◽  
Nhu Nguyen

Abstract This paper analyzes the power capture potential, structural loadings, and costs associated with an oscillating surge wave energy converter (OSWEC) operating on a raised foundation. The raised OSWEC offers opportunities for reduced installation costs, improved energy production, and greater flexibility of deployment when compared with fixed-bottom models. In this investigation, we simulated several different foundation geometries using WEC-Sim to estimate power capture and structural loads. In an effort to maximize power capture, several cases in which flat plates of varying size were attached to the top of the foundation, under and parallel with the OSWEC, were also simulated. These plates were found to enhance power capture by preventing the wave-induced pressure from passing underneath the OSWEC, diverting this pressure toward the OSWEC instead. The OSWEC was simulated in the six Wave Energy Prize sea states, which were chosen as a representative sample of U.S. deployment sites. A first-order estimate of structural costs was calculated using the Wave Energy Prize ACE metric, with the foundation comprised predominantly of steel-reinforced concrete and the OSWEC comprised of A36 steel. Influence of foundation geometry on power capture, structural loadings, and ACE are topics of particular interest. This work has been inspired by advances in large-scale additive manufacturing techniques that have the potential to dramatically reduce the cost of subsea foundations. These advancements may enable cost-effective WEC systems to be deployed on raised foundations.


Author(s):  
Jelena Janjić ◽  
Sarah Gallagher ◽  
Emily Gleeson ◽  
Frédéric Dias

Using wind speeds and sea ice fields from the EC-Earth global climate model to run the WAVEWATCH III model, we investigate the changes in the wave climate of the northeast Atlantic by the end of the 21st century. Changes in wave climate parameters are related to changes in wind forcing both locally and remotely. In particular, we are interested in the behavior of large-scale atmospheric oscillations and their influence on the wave climate of the North Atlantic Ocean. Knowing that the North Atlantic Oscillation (NAO) is related to large-scale atmospheric circulation, we carried out a correlation analysis of the NAO pattern using an ensemble of EC-Earth global climate simulations. These simulations include historical periods (1980–2009) and projected changes (2070–2099) by the end of the century under the RCP4.5 and RCP8.5 Representative Concentration Pathway (RCP) forcing scenarios with three members in each RCP wave model ensemble. In addition, we analysed the correlations between the NAO and a range of wave parameters that describe the wave climate from EC-Earth driven WAVEWATCH III model simulation over the North Atlantic basin, focusing on a high resolution two-way nested grid over the northeast Atlantic. The results show a distinct decrease by the end of the century and a strong positive correlation with the NAO for all wave parameters observed.


Author(s):  
Alexander V. Babanin

Abstract Until recently, large-scale models did not explicitly take account of ocean surface waves which are a process of much smaller scales. However, it is rapidly becoming clear that many large-scale geophysical processes are essentially coupled with the surface waves, and those include ocean circulation, weather, Tropical Cyclones and polar sea ice in both Hemispheres, climate and other phenomena in the atmosphere, at air/sea, sea/ice and sea/land interface, and many issues of the upper-ocean mixing below the surface. Besides, the wind-wave climate itself experiences large-scale trends and fluctuations, and can serve as an indicator for changes in the weather climate. In the presentation, we will discuss wave influences at scales from turbulence to climate, on the atmospheric and oceanic sides. At the atmospheric side of the interface, the air-sea coupling is usually described by means of the drag coefficient Cd, which is parameterised in terms of the wind speed, but the scatter of experimental data with respect to such dependences is very significant and has not improved noticeably over some 40 years. It is argued that the scatter is due to multiple mechanisms which contribute into the sea drag, many of them are due to surface waves and cannot be accounted for unless the waves are explicitly known. The Cd concept invokes the assumption of constant-flux layer, which is also employed for vertical profiling of the wind measured at some elevation near the ocean surface. The surface waves, however, modify the balance of turbulent stresses very near the surface, and therefore such extrapolations can introduce significant biases. This is particularly essential for buoy measurements in extreme conditions, when the anemometer mast is within the Wave Boundary Layer (WBL) or even below the wave crests. In this presentation, field data and a WBL model are used to investigate such biases. It is shown that near the surface the turbulent fluxes are less than those obtained by extrapolation using the logarithmic-layer assumption, and the mean wind speeds very near the surface, based on Lake George field observations, are up to 5% larger. The dynamics is then simulated by means of a WBL model coupled with nonlinear waves, which revealed further details of complex behaviours at wind-wave boundary layer. Furthermore, we analyse the structure of WBL for strong winds (U10 > 20 m/s) based on field observations. We used vertical distribution of wind speed and momentum flux measured in Topical Cyclone Olwyn (April 2015) in the North-West shelf of Australia. A well-established layer of constant stress is observed. The values obtained for u⁎ from the logarithmic profile law against u⁎ from turbulence measurements (eddy correlation method) differ significantly as wind speed increases. Among wave-induced influences at the ocean side, the ocean mixing is most important. Until recently, turbulence produced by the orbital motion of surface waves was not accounted for, and this fact limits performance of the models for the upper-ocean circulation and ultimately large-scale air-sea interactions. While the role of breaking waves in producing turbulence is well appreciated, such turbulence is only injected under the interface at the vertical scale of wave height. The wave-orbital turbulence is depth-distributed at the scale of wavelength (∼10 times the wave height) and thus can mix through the ocean thermocline in the spring-summer seasons. Such mixing then produces feedback to the large-scale processes, from weather to climate. In order to account for the wave-turbulence effects, large-scale air-sea interaction models need to be coupled with wave models. Theory and practical applications for the wave-induced turbulence will be reviewed in the presentation. These include viscous and instability theories of wave turbulence, direct numerical simulations and laboratory experiments, field and remote sensing observations and validations, and finally implementations in ocean, Tropical Cyclone, ocean and ice models. As a specific example of a wave-coupled environment, the wave climate in the Arctic as observed by altimeters will be presented. This is an important topic for the Arctic Seas, which are opening from ice in summer time. Challenges, however, are many as their Metocean environment is more complicated and, in addition to winds and waves, requires knowledge and understanding of ice material properties and its trends. On one hand, no traditional statistical approach is possible since in the past for most of the Arctic Ocean there was limited wave activity. Extrapolations of the current trends into the future are not feasible, because ice cover and wind patterns in the Arctic are changing. On the other hand, information on the mean and extreme wave properties is of great importance for oceanographic, meteorological, climate, naval and maritime applications in the Arctic Seas.


Sign in / Sign up

Export Citation Format

Share Document