scholarly journals Analysing the Near-Field Effects and the Power Production of Near-Shore WEC Array Using a New Wave-to-Wire Model

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1137
Author(s):  
Philip Balitsky ◽  
Nicolas Quartier ◽  
Vasiliki Stratigaki ◽  
Gael Verao Fernandez ◽  
Panagiotis Vasarmidis ◽  
...  

In this study, a series of modules is integrated into a wave-to-wire (W2W) model that links a Boundary Element Method (BEM) solver to a Wave Energy Converter (WEC) motion solver which are in turn coupled to a wave propagation model. The hydrodynamics of the WECs are resolved in the wave structure interaction solver NEMOH, the Power Take-off (PTO) is simulated in the WEC simulation tool WEC-Sim, and the resulting perturbed wave field is coupled to the mild-slope propagation model MILDwave. The W2W model is run for verified for a realistic wave energy project consisting of a WEC farm composed of 10 5-WEC arrays of Oscillating Surging Wave Energy Converters (OSWECs). The investigated WEC farm is modelled for a real wave climate and a sloping bathymetry based on a proposed OSWEC array project off the coast of Bretagne, France. Each WEC array is arranged in a power-maximizing 2-row configuration that also minimizes the inter-array separation distance d x and d y and the arrays are located in a staggered energy maximizing configuration that also decreases the along-shore WEC farm extent. The WEC farm power output and the near and far-field effects are simulated for irregular waves with various significant wave heights wave peak periods and mean wave incidence directions β based on the modelled site wave climatology. The PTO system of each WEC in each farm is modelled as a closed-circuit hydraulic PTO system optimized for each set of incident wave conditions, mimicking the proposed site technology, namely the WaveRoller® OSWEC developed by AW Energy Ltd. The investigation in this study provides a proof of concept of the proposed W2W model in investigating potential commercial WEC projects.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2899 ◽  
Author(s):  
Gael Verao Fernandez ◽  
Philip Balitsky ◽  
Vasiliki Stratigaki ◽  
Peter Troch

For renewable wave energy to operate at grid scale, large arrays of Wave Energy Converters (WECs) need to be deployed in the ocean. Due to the hydrodynamic interactions between the individual WECs of an array, the overall power absorption and surrounding wave field will be affected, both close to the WECs (near field effects) and at large distances from their location (far field effects). Therefore, it is essential to model both the near field and far field effects of WEC arrays. It is difficult, however, to model both effects using a single numerical model that offers the desired accuracy at a reasonable computational time. The objective of this paper is to present a generic coupling methodology that will allow to model both effects accurately. The presented coupling methodology is exemplified using the mild slope wave propagation model MILDwave and the Boundary Elements Methods (BEM) solver NEMOH. NEMOH is used to model the near field effects while MILDwave is used to model the WEC array far field effects. The information between the two models is transferred using a one-way coupling. The results of the NEMOH-MILDwave coupled model are compared to the results from using only NEMOH for various test cases in uniform water depth. Additionally, the NEMOH-MILDwave coupled model is validated against available experimental wave data for a 9-WEC array. The coupling methodology proves to be a reliable numerical tool as the results demonstrate a difference between the numerical simulations results smaller than 5% and between the numerical simulations results and the experimental data ranging from 3% to 11%. The simulations are subsequently extended for a varying bathymetry, which will affect the far field effects. As a result, our coupled model proves to be a suitable numerical tool for simulating far field effects of WEC arrays for regular and irregular waves over a varying bathymetry.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 538 ◽  
Author(s):  
Gael Fernández ◽  
Vasiliki Stratigaki ◽  
Peter Troch

Between the Wave Energy Converters (WECs) of a farm, hydrodynamic interactions occur and have an impact on the surrounding wave field, both close to the WECs (“near field” effects) and at large distances from their location (“far field” effects). To simulate this “far field” impact in a fast and accurate way, a generic coupling methodology between hydrodynamic models has been developed by the Coastal Engineering Research Group of Ghent University in Belgium. This coupling methodology has been widely used for regular waves. However, it has not been developed yet for realistic irregular sea states. The objective of this paper is to present a validation of the novel coupling methodology for the test case of irregular waves, which is demonstrated here for coupling between the mild slope wave propagation model, MILDwave, and the ‘Boundary Element Method’-based wave–structure interaction solver, NEMOH. MILDwave is used to model WEC farm “far field” effects, while NEMOH is used to model “near field” effects. The results of the MILDwave-NEMOH coupled model are validated against numerical results from NEMOH, and against the WECwakes experimental data for a single WEC, and for WEC arrays of five and nine WECs. Root Mean Square Error (RMSE) between disturbance coefficient (Kd) values in the entire numerical domain ( R M S E K d , D ) are used for evaluating the performed validation. The R M S E K d , D between results from the MILDwave-NEMOH coupled model and NEMOH is lower than 2.0% for the performed test cases, and between the MILDwave-NEMOH coupled model and the WECwakes experimental data R M S E K d , D remains below 10%. Consequently, the efficiency is demonstrated of the coupling methodology validated here which is used to simulate WEC farm impact on the wave field under the action of irregular waves.


Author(s):  
Philip Balitsky ◽  
Gael Verao Fernandez ◽  
Vasiliki Stratigaki ◽  
Peter Troch

In order to produce a large amount of electricity at a competitive cost, farms of Wave Energy Converters (WECs) will need to be deployed in the ocean. Due to hydrodynamic interaction between the devices, the geometric layout of the farm will influence the power production and affect the surrounding area around the WECs. Therefore it is essential to model both the near field effects and far field effects of the WEC farm. It is difficult, however, to model both, employing a single numerical model that offers the desired precision at a reasonable computational cost. The objective of this paper is to present a coupling methodology that will allow for the accurate modelling of both phenomena at a reasonably low computational cost. The one-way coupling proposed is between the Boundary Element Method (BEM) solver NEMOH, and the depth-averaged mild-slope wave propagation model, MILDwave. In the presented cases, NEMOH is used to resolve the near field effects whilst MILDwave is used to determine the far field effects.


Author(s):  
Vasiliki Stratigaki ◽  
Peter Troch ◽  
David Forehand

This study focuses on the numerical modeling of wave fields around structures due to their interaction with waves, with the intention to simulate both the resulting near and far field effects. Examples from the wave energy world are employed such as Wave Energy Converters (WECs), fixed or oscillating devices usually arranged in farms, that interact with the incoming waves and extract wave energy from them. As a result of the hydrodynamic interaction between the devices within a farm (so-called near-field effects), the power absorption of the farm is affected. Moreover, wave dissipation has been observed numerically (e.g. Troch et al., 2010) and in scale tests (e.g. Stratigaki et al., 2014; 2015) between the WEC farm location and e.g. the shoreline (so called far-field effects). These wave field changes can affect neighboring sea activities, coastal eco-systems, the coastline and even coastal defense conditions/parameters.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 333 ◽  
Author(s):  
Carlo Re ◽  
Giorgio Manno ◽  
Giuseppe Ciraolo ◽  
Giovanni Besio

This paper presents the estimation of the wave energy potential around the Aegadian islands (Italy), carried out on the basis of high resolution wave hindcast. This reanalysis was developed employing Weather Research and Forecast (WRF) and WAVEWATCH III ® models for the modelling of the atmosphere and the waves, respectively. Wave climate has been determined using the above-mentioned 32-year dataset covering the years from 1979 to 2010. To improve the information about wave characteristics regarding spatial details, i.e., increasing wave model resolution, especially in the nearshore region around the islands, a SWAN (Simulating WAves Nearshore) wave propagation model was used. Results obtained through the development of the nearshore analysis detected four energetic hotspots close to the coast of the islands. Near Marettimo island, only one hotspot was detected with a maximum wave energy flux of 9 kW/m, whereas, around Favignana, three hotspots were identified with a maximum wave energy flux of 6.5 kW/m. Such values of available wave energy resource are promising to develop different projects for wave energy converters in specific areas along the coast, in order to improve the energetic independence of Aegadian islands.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2907 ◽  
Author(s):  
Philip Balitsky ◽  
Gael Verao Fernandez ◽  
Vasiliki Stratigaki ◽  
Peter Troch

One of the key challenges in designing a Wave Energy Converter (WEC) farm is geometrical layout, as WECs hydrodynamically interact with one another. WEC positioning impacts both the power output of a given wave-energy project and any potential effects on the surrounding areas. The WEC farm developer must seek to optimize WEC positioning to maximize power output while minimizing capital cost and any potential deleterious effects on the surrounding area. A number of recent studies have shown that a potential solution is placing WECs in dense arrays of several WECs with space between individual arrays for navigation. This innovative arrangement can also be used to reduce mooring and cabling costs. In this paper, we apply a novel one-way coupling method between the NEMOH BEM model and the MILDwave wave-propagation model to investigate the influence of WEC array separation distance on the power output and the surrounding wave field between two densely packed WEC arrays in a farm. An iterative method of applying the presented one-way coupling to interacting WEC arrays is used to compute the wave field in a complete WEC farm and to calculate its power output. The notion of WEC array ‘independence’ in a farm from a hydrodynamic point of view is discussed. The farm is modeled for regular and irregular waves for a number of wave periods, wave incidence angles, and various WEC array separation distances. We found strong dependency of the power output on the wave period and the wave incidence angle for regular waves at short WEC array–array separation distances. For irregular wave operational conditions, a large majority of WEC array configurations within a WEC farm were found to be hydrodynamically ‘independent’.


2020 ◽  
Vol 8 (3) ◽  
pp. 168 ◽  
Author(s):  
J. Cameron McNatt ◽  
Aaron Porter ◽  
Kelley Ruehl

This numerical study compares the wave field generated by the spectral wave action balance code, SNL-SWAN, to the linear-wave boundary-element method (BEM) code, WAMIT. The objective of this study is to assess the performance of SNL-SWAN for modeling wave field effects produced by individual wave energy converters (WECs) and wave farms comprising multiple WECs by comparing results from SNL-SWAN with those produced by the BEM code WAMIT. BEM codes better model the physics of wave-body interactions and thus simulate a more accurate near-field wave field than spectral codes. In SNL-SWAN, the wave field’s energy extraction is modeled parametrically based on the WEC’s power curve. The comparison between SNL-SWAN and WAMIT is made over a range of incident wave conditions, including short-, medium-, and long-wavelength waves with various amounts of directional spreading, and for three WEC archetypes: a point absorber (PA), a pitching flap (PF) terminator, and a hinged raft (HR) attenuator. Individual WECs and wave farms of five WECs in various configuration were studied with qualitative comparisons made of wave height and spectra at specific locations, and quantitative comparisons of the wave fields over circular arcs around the WECs as a function of radial distance. Results from this numerical study demonstrate that in the near-field, the difference between SNL-SWAN and WAMIT is relatively large (between 20% and 50%), but in the far-field from the array the differences are minimal (between 1% and 5%). The resultant wave field generated by the two different numerical approaches is highly dependent on parameters such as: directional wave spreading, wave reflection or scattering, and the WEC’s power curve.


2005 ◽  
Vol 128 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Gaelle Duclos ◽  
Aurelien Babarit ◽  
Alain H. Clément

Considered as a source of renewable energy, wave is a resource featuring high variability at all time scales. Furthermore wave climate also changes significantly from place to place. Wave energy converters are very often tuned to suit the more frequent significant wave period at the project site. In this paper we show that optimizing the device necessitates accounting for all possible wave conditions weighted by their annual occurrence frequency, as generally given by the classical wave climate scatter diagrams. A generic and very simple wave energy converter is considered here. It is shown how the optimal parameters can be different considering whether all wave conditions are accounted for or not, whether the device is controlled or not, whether the productive motion is limited or not. We also show how they depend on the area where the device is to be deployed, by applying the same method to three sites with very different wave climate.


2013 ◽  
Vol 569-570 ◽  
pp. 595-602 ◽  
Author(s):  
William Finnegan ◽  
Jamie Goggins

A vital aspect of ensuring the cost effectiveness of wave energy converters (WECs) is being able to monitor their performance remotely through structural health monitoring, as these devices are deployed in very harsh environments in terms of both accessibility and potential damage to the devices. The WECs are monitored through the use of measuring equipment, which is strategically placed on the device. This measured data is then compared to the output from a numerical model of the WEC under the same ocean wave conditions. Any deviations would suggest that there are problems or issues with the WEC. The development of accurate and effective numerical models is necessary to minimise the number of times the visual, or physical, inspection of a deployed WEC is required. In this paper, a numerical wave tank model is, first, validated by comparing the waves generated to those generated experimentally using the wave flume located at the National University of Ireland, Galway. This model is then extended so it is suitable for generating real ocean waves. A wave record observed at the Atlantic marine energy test site has been replicated in the model to a high level of accuracy. A rectangular floating prism is then introduced into the model in order to explore wave-structure interaction. The dynamic response of the structure is compared to a simple analytical solution and found to be in good agreement.


2012 ◽  
Vol 1 (33) ◽  
pp. 5 ◽  
Author(s):  
Hernan Fernandez ◽  
Gregorio Iglesias ◽  
Rodrigo Carballo ◽  
Alberte Castro ◽  
Marcos Sánchez ◽  
...  

The development of efficient, reliable Wave Energy Converters (WECs) is a prerequisite for wave energy to become a commercially viable energy source. Intensive research is currently under way on a number of WECs, among which WaveCat©—a new WEC recently patented by the University of Santiago de Compostela. In this sense, this paper describes the WaveCat concept and its ongoing development and optimization. WaveCat is a floating WEC intended for operation in intermediate water depths (50–100 m). Like a catamaran, it consists of two hulls—from which it derives its name. The difference with a conventional catamaran is that the hulls are not parallel but convergent; they are joined at the stern, forming a wedge in plan view. Physical model tests of a 1:30 model were conducted in a wave tank using both regular and irregular waves. In addition to the waves and overtopping rates, the model displacements were monitored using a non-intrusive system. The results of the physical model tests will be used to validate the 3D numerical model, which in turn will be used to optimize the design of WaveCat for best performance under a given set of wave conditions.


Sign in / Sign up

Export Citation Format

Share Document