scholarly journals Implementation of a Parallel-Series Resonant Converter with Wide Input Voltage Range

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4095 ◽  
Author(s):  
Bor-Ren Lin

A new resonant converter is presented to have the advantages of soft switching operation on power devices, without reverse recovery current loss on power diodes and wide input voltage range operation. Resonant converter with frequency modulation is adopted in the proposed circuit to accomplish the low switching loss on power switches and possible zero current switching operation on fast recovery diodes. To improve the problem of limit voltage range operation in the conventional resonant converter, a new parallel-series structure resonant converter is studied to achieve wide input voltage operation capability, such as from Vin,min to 4Vin,min. A 1.8 kW laboratory circuit is implemented, and the measured results are provided to confirm the theoretical analysis and circuit performance.

2019 ◽  
Vol 10 (1) ◽  
pp. 310 ◽  
Author(s):  
Bor-Ren Lin ◽  
Yong-Sheng Zhuang

This paper studied a hybrid resonant converter with three half bridge legs for wide input voltage operation. Compared to the conventional resonant converters with narrow voltage operation, the presented converter can achieve wider voltage operation. On the basis of the proper switching status of power switches, the developed converter can operate at half-bridge resonant circuit under high input voltage range and the other two full-bridge resonant circuits under medium and low input voltage ranges. Each resonant circuit has a 2:1 (Vin,max = 2Vin,min) input voltage operation range. Therefore, the developed converter can achieve an 8:1 (Vin,max = 8Vin,min) wide voltage operation. The main advantage of the studied converter is the single-stage direct current (DC)/DC power conversion instead of the two-stage power conversion to achieve wide voltage operation. Because the equivalent resonant tank of the adopted converter is controlled by frequency modulation, the soft switching operation on power switches or rectifier diodes can be realized to improve circuit efficiency. The performance of the proposed circuit was confirmed and verified by experiments with a laboratory circuit.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4341
Author(s):  
Sang Gab Park ◽  
Byoung Kuk Lee ◽  
Jong Soo Kim

This paper presents a tightly regulated multi-output isolated converter that employs only an independently regulated synchronous Single-Switched Post-Regulator (SSPR). The proposed converter is a highly accurate single-ended secondary side post-regulator based on a Series Resonant Converter (SRC); furthermore, it has a voltage-doubler characteristic. The proposed post-regulator requires only one auxiliary switch, in contrast with a bulky and expensive non-isolated DC–DC converter. Moreover, the added voltage-doubler can tightly regulate the slave output current. In addition, the voltage-doubler can improve electromagnetic interference characteristics and reduce switching losses arising from the Zero Current Switching (ZCS) operation of all power switches. The validity of the proposed converter is verified using experimental results obtained via a prototype converter applicable to an LED 3D TV power supply.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3479 ◽  
Author(s):  
Bor-Ren Lin

A new DC/DC resonant converter with wide output voltage range operation is presented and studied to have the benefits of low switching losses on active devices and low voltage stresses on power diodes. To overcome serious reverse recovery losses of power diodes on a conventional full-bridge pulse-width modulation converter, the resonant converter is adopted to reduce the switching loss and increase the circuit efficiency. To extend the output voltage range in conventional half-bridge or full-bridge resonant converters, the secondary sides of two diode rectifiers are connected in series to have wide output voltage operation. The proposed converter can be either operated at one-resonant-converter mode for low voltage range or two-resonant-converter mode for high voltage range. Thus, the voltage rating of power diodes is decreased. Experiments with the design example are given to show the circuit performance and validate the theoretical discussion and analysis.


2012 ◽  
Vol 424-425 ◽  
pp. 1024-1027 ◽  
Author(s):  
Hyun Lark Do

A non-isolated high step-up DC-DC converter with a coupled inductor is proposed in this paper. The proposed converter provides high voltage gain and soft-switching operation of all semiconductor devices. A voltage doubler and a coupled inductor increase the voltage gain. Zero-voltage-switching (ZVS) of all switches and zero-current-switching (ZCS) of all diodes are achieved. Also, the voltages across the semiconductor devices are effectively clamped. Due to the soft-switching operation of all switching devices, the switching loss is significantly reduced and the high efficiency is obtained. The feasibility and performance of the proposed converter were verified on an experimental prototype


2019 ◽  
Vol 29 (05) ◽  
pp. 2050069
Author(s):  
Naresh Kumar Reddi ◽  
M. R. Ramteke ◽  
H. M. Suryawanshi

This paper proposes a new single-input dual-output [SIDO] soft-switched resonant full-bridge converter, which has asymmetrical structures for the isolated multiple outputs. The proposed structure is capable of supplying different loads having dissimilar voltage-current characteristics and independent of each other. This converter features wide range of zero current switching (ZCS) turn-off and automatic load-voltage regulation. In automatic load-voltage regulation, converter maintains constant voltage without the need of change in frequency or duty ratio during load change. First, the modes of converter operation are explained and then design of key parameters have been outlined. A laboratory prototype for 380[Formula: see text]V, 500[Formula: see text]W as main output and 24[Formula: see text]V, 50[Formula: see text]W as auxiliary output for an input voltage range of 40–50[Formula: see text]V was built-up and tested. Experimental results confirm the viability of voltage regulation, ZCS and power efficiency of the proposed converter.


2011 ◽  
Vol 110-116 ◽  
pp. 2437-2441
Author(s):  
Watchara Thitayanuwat ◽  
Bunlung Neammanee

This paper presents a design of wide input voltage range 2 kW flyback resonant converter for the wind turbine system. The propose converter design for operated under zero voltage switch, it could increase the efficiency of system by reducing the turn on switching loss. The advantages of this converter can be operated in a wide input voltage range, isolation and used a few devices. From the simulation result with PSpice software and experimentation results are conform together which shows the designed circuit can be operated under zero voltage with high efficiency and wide input voltage range (90-240V), by the simulation results can be used for the specified rate of power semi-conductor devices.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2536
Author(s):  
Bor-Ren Lin ◽  
Yi-Kuan Lin

A full-bridge converter with an additional resonant circuit and variable secondary turns is presented and achieved to have soft-switching operation on active devices, wide voltage input operation and low freewheeling current loss. The resonant tank is linked to the lagging-leg of the full bridge pulse-width modulation converter to realize zero-voltage switching (ZVS) characteristic on the power switches. Therefore, the wide ZVS operation can be accomplished in the presented circuit over the whole input voltage range and output load. To overcome the wide voltage variation on renewable energy applications such as DC wind power and solar power conversion, two winding sets are used on the output-side of the proposed converter to obtain the different voltage gains. Therefore, the wide voltage input from 90 to 450 V (Vin,max = 5Vin,min) is implemented in the presented circuit. To further improve the freewheeling current loss issue in the conventional phase-shift pulse-width modulation converter, an auxiliary DC voltage generated from the resonant circuit is adopted to reduce this freewheeling current loss. Compared to the multi-stage DC converters with wide input voltage range operation, the proposed circuit has a low freewheeling current loss, low switching loss and a simple control algorithm. The studied circuit is tested and the experimental results are demonstrated to testify the performance of the resented circuit.


Sign in / Sign up

Export Citation Format

Share Document