scholarly journals Study on Deformation and Energy Release Characteristics of Overlying Strata under Different Mining Sequence in Close Coal Seam Group Based on Similar Material Simulation

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4485 ◽  
Author(s):  
Feng Cui ◽  
Chong Jia ◽  
Xingping Lai

For the characteristics of overburden deformation and energy release under different mining sequences of close-distance coal seam groups, physical material similar simulation experiments were carried out, and comprehensive monitoring methods such as dial gauge, total station, micro-seismic monitor, and pressure sensor were used to test the Guangou Coal Mine. The comparative analysis of the initial mining and the upward recovery of the B4-1 coal seam is carried out to study the migration law, mine pressure distribution, and energy release characteristics of the overlying strata during W1145 mining face mining and residual coal mining. The results show that the maximum subsidence of surface and rock formation caused by re-mining of B4-1 residual coal is 0.96 m and 2.57 m respectively, which is 0.42 m and 0.47 m lower than that of W1145 working face. The boundary angle, moving angle, and rock stratum formed by the upward recovery of the remaining coal seam are 79.3°, 81.1°, and 67.5° respectively, which are smaller than the 80.9°, 82.3°, and 75.8° formed by the first mining. The cumulative development height of the fracture zone caused by upward mining is 115.7 m, which is 8.0% smaller than the cumulative development height of the downstream fracture zone of 125.8 m. When the up-level mining is carried out, the fragmentation effect of the rock layer below the key layer is strong, which makes the loosely broken rock block have a better supporting effect. Therefore, the residual coal mining time is longer than that of the first mining. The initial pressure step of the residual coal recovery is 139.2 m, and the average step of the cycle is 34.2 m, which is significantly larger than the 128.0 m and 26.0 m of the first mining. The loose rock strata that are disturbed by the upward recovery are more likely to be broken. Therefore, there are more micro-seismic events during the re-mining of the remaining coal. The B4-1 residual coals have a total of 945 incidents of re-seismic micro-seismic events, which is 292 more than the W1145 working face. After the B2 coal seam mining disturbance, the energy of some rock layers above the B4-1 coal seam is released, so that the micro-seismic energy caused by re-mining of the remaining coal seam is small. Through microseismic monitoring, it can be concluded that the accumulated energy in the process of upward re-mining of remaining coal seam is less than that in the process of downward mining of W1145 working face. Upward recovery is more likely to cause damage in the disturbed loose rock formation. Therefore, the frequency of micro-seismic events during the upward recovery is higher, and the partial energy release of the rock after the disturbance is caused, so that the source energy generated in the unit length of the upward recovery is smaller than the initial one.

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


2014 ◽  
Vol 1049-1050 ◽  
pp. 335-338 ◽  
Author(s):  
Fa Quan Liu ◽  
Xue Wen Geng ◽  
Yong Che ◽  
Xiang Cui

To get the maximum coal in front of the working face of the 17# coal seam, we installed a longer beam which is 1.2m in length in the leading end of the original working face supports ZF3000/17/28, and know that working face supports’ setting load and working resistance are lower .We changed the original supports with shield supports ZY3800/15/33 that are adaptable in the geological condition and got the favorable affection.


2019 ◽  
Vol 12 (1) ◽  
pp. 37 ◽  
Author(s):  
Feng Cui ◽  
Yanbin Yang ◽  
Xingping Lai ◽  
Chong Jia ◽  
Pengfei Shan

In order to study the influence of advancing speed and stoping time of a coal face on the scale and frequency of rock burst, the energy release characteristics of an overburden fracture under six advancing speeds and four stoping times are studied by theoretical analysis and similar simulation experiments. The distribution characteristics of microseismic events before and after stoppage are compared, and the load/unload response ratio is introduced to analyze the relationship between the synergistic effect of advancing speed and stoping time and the characteristics of microseismic events in coal and rock mass. The mechanism of rock burst induced by the advancing speed and stoping time effect in the working face is studied, and the coordinated regulation and mitigation of advancing speed and stoping time are analyzed and completed. The results show that the effect of advancement speed and stoping time is very important to the energy release of overburden. The energy released by microseismic events during stoping is exponentially related to the advancing speed. The change of advancing speed causes the change of microseismic event characteristics, reflecting the evolution process of overburden structure and its energy. During stoping, the secondary microseismic events disturbed by mining occur frequently, leading to the significant difference of energy released by microseismic events during stoping. After stoping, the microseismic energy is more than four times higher than that during the stop period, and the risk of coal seam impact is high during the stope period. The synergetic change of advancement speed and stoping time changes the cycle of energy accumulation and release. The response ratio of loading and unloading considering the effect of advancement speed and stoping time is established by using the corresponding ratio of loading and unloading, and the impact risk of the coal seam is quantitatively analyzed. Based on the monitoring and analysis of microseismic events, the safety mining index of coordinated control with the energy of a single microseismic event of 180 J is established, and the best advancing speed of the working face is determined to be 4 m/d. According to the corresponding ratio of loading and unloading, the reasonable stoping time of different advancing speeds and the corresponding advancing speed of different stoping times after the resumption of mining are determined, so as to provide a reference for the safe and efficient mining of similar rock burst mines.


2011 ◽  
Vol 255-260 ◽  
pp. 3780-3785 ◽  
Author(s):  
Lei Yu ◽  
Zhi Zhong Fan ◽  
Gang Xu

The mine pressure behavior characters of shallow buried coal seam differed from both shallow seam mining and general depth seam. Mine pressure observation and numerical analysis were applied to research mine pressure behavior laws in fully mechanized face of shallow buried coal seam with thick bedrock and thin alluvium. It showed that the ground subsidence level phenomenon did not appear obviously although with obvious dynamic loading of fully mechanized face during the pressure period. The appearance was due to non-synchronized fracture from two key layers in the overlying rock layers and their interaction, which leaded to roof breaking initially and caving rocks with the form of an arch. Due to the periodic breaking and caving characteristics appearing as fully cut-down and arch alternately, the periodic pressure of shallow buried coal seam face showed as different size. The conclusion could be a reference for similar working face control.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ke Ding ◽  
Lianguo Wang ◽  
Wenmiao Wang ◽  
Kai Wang ◽  
Bo Ren ◽  
...  

Mining-induced fractures in underground coal mining face affect the stability of overburdens and provide preferential channels for water and material transfer in the underground environment. Therefore, to study the development of water-flowing fracture zones in overburdens of working face and goaf is of great significance for roof control, gas drainage, water resistance, disaster reduction, and efficient mining from the mining. In this study, a new method for predicting the development of overburden water-flowing fracture zone height (DHOWFFZ) was proposed based on the characteristics of overburden rock in No. 3 coal seam of Xin’an Coal Mine. First, the stope of No. 3 coal seam exhibits a rock stratum structure of mudstone and sandstone overlapping. Considering this characteristic, the overburden strata of No. 3 coal seam are divided into several “mudstone-sandstone” rock stratum groups. Furthermore, the ultimate tensile deformation of soft rock is greater than that of hard rock. It is proposed to judge the development degree of penetrating fracture in each rock stratum by adopting the elongation rate of mudstone intermediate layer. Meanwhile, the DHOWFFZ of “mudstone sandstone” composite rock stratum structure in the 3402 working face of No. 3 coal seam is calculated to be smaller than 43.1 m according to the actual situation. Finally, the DHOWFFZ in the 3402 working face was measured in the field, which verifies the rationality of the new DHOWFFZ prediction method. The research results provide new ideas for the prediction of DHOWFFZ and are helpful for future research in related fields.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dequan Sun ◽  
Xiaoyan Li ◽  
Zhijie Zhu ◽  
Yang Li ◽  
Fang Cui

The height of the fractured zone caused by coal mining is extremely significant for safely mining under water, water conservation, and gas treatment. At present, the common prediction methods of overburden fractured zone height are only applicable to thin and medium-thick coal seams, not suitable for thick and extra-thick coal seams. In order to determine the overburden fractured zone distribution characteristics of extra-thick seam mining, failure process analysis method of overlying strata was proposed based on key strata theory. This method was applied to 15 m coal seam of Tongxin coal mine, and fractured zone height was determined to be 174 m for 8100 panel. EH4 electromagnetic image system and borehole televiewer survey were also conducted to verify the theory results. The distribution of the electrical conductivity showed that the failure height was 150–170 m. Observation through the borehole televiewer showed that the fractured zone height was 171 m. The results of the two field test methods showed that the fractured zone height was 150–171 m, and it was consistent with the theory calculation results. Therefore, this failure process analysis method of overlying strata can be safely used for other coal mines.


2011 ◽  
Vol 121-126 ◽  
pp. 2911-2916
Author(s):  
Guo Lei Liu ◽  
Ke Gong Fan ◽  
Tong Qiang Xiao

Through testing the mountainous shallow-buried coal seam mining working face strata behaviors in Faer mine field, it got the strata behaviors: it was of large roof pressure, high rate of safety valve opening in hydraulic support, and even some supports crushed or took separation between top beams and tail beams. Traditional method of calculating supports’ resistance can not be applied to mountainous shallow-buried coal seam mining working face. With the discrete element simulation software UDEC it analyzed the strata movement feature, and got that the overlying strata took collapse and horizontal displacement after mountainous shallow-buried coal seam mined, and the strata movement feature was different between reverse slope mining and positive slope mining.


Processes ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 150 ◽  
Author(s):  
Quanlin Wu ◽  
Quansen Wu ◽  
Yanchao Xue ◽  
Peng Kong ◽  
Bin Gong

When the hard and thick key strata are located above the working face, the bed separation structure is easy to be formed after mining because of the high strength and integrity of the hard and thick key strata and the initial breaking step is large. After the hard, thick strata are broken, the overburden will be largely collapsed and unstable in a large area and the dynamic disaster is easily induced. In this study, considering the fundamental deformation and failure effect of coal seam, the development law of the bed separation and the fractures under hard and thick magmatic rocks and the mechanism of breaking induced disaster of hard and thick magmatic rocks are studied by similar simulation tests. The results of the study are as follows: (1) The similar material ratio of coal seam is obtained by low-strength orthogonal ratio test of similar materials of coal seam, that is, cement:sand:water:activated carbon:coal = 6:6:7:1.1:79.9. (2) The magmatic rocks play a role in shielding the development of the bed separation, which makes the bed separation beneath the magmatic rock in an unclosed state for a long time, providing space for the accumulation of gas and water. (3) The distribution pattern of the fracture zone shows different shapes as the advancing of working face and the fracture zone width of the rear of working face coal wall is larger than that of the front of the open-off. (4) The breaking of magmatic rocks will press the gas and water accumulated in the bed separation space below to rush towards the working face along the fracture zone at both ends of the goaf. The above results are verified through the drainage borehole gas jet accident in the Yangliu coal mine. The research results are of great significance for revealing the occurrence process of dynamic disasters and adopting scientific and reasonable preventive measures.


2012 ◽  
Vol 600 ◽  
pp. 194-198 ◽  
Author(s):  
Ming Ming Wen

Studying on the characteristics of the overlying strata movement in high inclined coal seam, the similar material is applied in the simulation model which was built based on the similar material simulation theory and high inclined seam geological condition of Dongbaowei coal mine. The picture and displacement of overlying strata were obtained from the similar material simulation. As a result, the characteristics of the fracture and movement of overlying strata above the full mechanized working face in high inclined seam. This paper proposes some support measures to improve the safety of the working face. These provide significance theoretical guidance and reference value for other working face in high inclined seam.


Sign in / Sign up

Export Citation Format

Share Document