scholarly journals Experimental Study on the Effect of Advancing Speed and Stoping Time on the Energy Release of Overburden in an Upward Mining Coal Working Face with a Hard Roof

2019 ◽  
Vol 12 (1) ◽  
pp. 37 ◽  
Author(s):  
Feng Cui ◽  
Yanbin Yang ◽  
Xingping Lai ◽  
Chong Jia ◽  
Pengfei Shan

In order to study the influence of advancing speed and stoping time of a coal face on the scale and frequency of rock burst, the energy release characteristics of an overburden fracture under six advancing speeds and four stoping times are studied by theoretical analysis and similar simulation experiments. The distribution characteristics of microseismic events before and after stoppage are compared, and the load/unload response ratio is introduced to analyze the relationship between the synergistic effect of advancing speed and stoping time and the characteristics of microseismic events in coal and rock mass. The mechanism of rock burst induced by the advancing speed and stoping time effect in the working face is studied, and the coordinated regulation and mitigation of advancing speed and stoping time are analyzed and completed. The results show that the effect of advancement speed and stoping time is very important to the energy release of overburden. The energy released by microseismic events during stoping is exponentially related to the advancing speed. The change of advancing speed causes the change of microseismic event characteristics, reflecting the evolution process of overburden structure and its energy. During stoping, the secondary microseismic events disturbed by mining occur frequently, leading to the significant difference of energy released by microseismic events during stoping. After stoping, the microseismic energy is more than four times higher than that during the stop period, and the risk of coal seam impact is high during the stope period. The synergetic change of advancement speed and stoping time changes the cycle of energy accumulation and release. The response ratio of loading and unloading considering the effect of advancement speed and stoping time is established by using the corresponding ratio of loading and unloading, and the impact risk of the coal seam is quantitatively analyzed. Based on the monitoring and analysis of microseismic events, the safety mining index of coordinated control with the energy of a single microseismic event of 180 J is established, and the best advancing speed of the working face is determined to be 4 m/d. According to the corresponding ratio of loading and unloading, the reasonable stoping time of different advancing speeds and the corresponding advancing speed of different stoping times after the resumption of mining are determined, so as to provide a reference for the safe and efficient mining of similar rock burst mines.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ke Ding ◽  
Lianguo Wang ◽  
Mei Yu ◽  
Wenmiao Wang ◽  
Bo Ren

Rock bursts in coal mines are usually unpredictable. In view of this problem, the energy–frequency relationship and spatial distribution characteristics of microseismic events during the mining of 5305 working face in Xinhe Coal Mine under complex geological conditions were analyzed in this study. Besides, the law and precursors of rock burst occurrence in this working face were discussed. The following research results were obtained. Before the rock burst occurred in 5305 working face, the energy and frequency of microseismic events vary in the following order: “peak-drop-rise-rock burst.” The analysis on spatial characteristics of microseismic events suggests that microseismic events were mainly concentrated at the boundary between the roof and the coal seam or at the hard roof near the coal seam within 0–160 m in front of the working face, and most of the events lay on the goaf side. Moreover, the energy and frequency of microseismic events both decrease in the above region before the rock burst occurred. This “microseismic event absence” phenomenon can be regarded as one of the precursors of rock burst occurrence. In addition, a multilevel antiburst scheme was proposed for the complex conditions: (1) to adopt large-diameter boreholes pressure relief technology and key layer high-level pressure relief technology for adjusting the stress distribution in the surrounding rock of crossheading in front of the working face and dissipating elastic strain energy; (2) to determine the advance speed to be 1.5 m/d for reducing the mining disturbance; (3) to adopt full-section reinforced support of the roadway for enhancing the antiburst capacity of surrounding rock. After the implementation of this scheme, the energy and frequency of microseismic events monitored on-site changed gently, and 5305 working face was safely recovered to the stop line position. The scheme boasts a remarkable rock burst prevention and control effect.


2013 ◽  
Vol 295-298 ◽  
pp. 2913-2917
Author(s):  
Xiang Yang Zhang ◽  
Min Tu

In order to study the stress distribution and its dynamic influence law while the protective layer mining, based on the transfer law of mining-induced stress in the coal seam floor and in front of the working face, using numerical simulation software to simulate the surrounding rock stress under the different pillar width mining conditions, and carried through the roadway deformation engineering practice observations. It is shown that reserved 110m coal pillar could weaken the impact on the front of the floor tunnel under the protective layer mining process. When the top liberated layer mining to reduce the impact of mining stress superposition, it should avoid the terminal lines on the two coal seams at the same location and may be staggered at least about 30m ~ 50m. And it obtained that the roadway deformation not only by mining impact, but also considering the geological environment surrounding rock conditions, tunnel position in which layers of rock, rock properties and other factors. The research guided the engineering practice successfully.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhihua Li ◽  
Ke Yang ◽  
Jianshuai Ji ◽  
Biao Jiao ◽  
Xiaobing Tian

A case study based on the 401103 fully mechanized caving face in the Hujiahe Coal Mine was carried out in this research to analyze the rock burst risks in a 54 m-wide coal pillar for roadway protection. Influencing factors of rock burst risks on the working face were analyzed. Stress distribution characteristics on the working face of the wide coal pillar for roadway protection were discussed using FLAC3D numerical simulation software. Spatial distribution characteristics of historical impact events on the working face were also investigated using the microseismic monitoring method. Results show that mining depth, geological structure, outburst proneness of coal strata, roof strata structure, adjacent mining area, and mining influence of the current working face are the main influencing factors of rock burst on the working face. Owing to the collaborative effects of front abutment pressure of the working face and lateral abutment pressure in the goaf, the coal pillar is in the ultimate equilibrium state and microseismic events mainly concentrate in places surrounding the coal pillars. Hence, wide coal pillars become the regions with rock burst risks on the working face. The working face adopts some local prevention technologies, such as pressure relief through presplitting blasting in roof, pressure relief through large-diameter pores in coal seam, coal seam water injection, pressure relief through large-diameter pores at bottom corners, and pressure relief through blasting at bottom corners. Moreover, some regional prevention technologies were proposed for narrow coal pillar for roadway protection, including gob-side entry, layer mining, and fully mechanized top-coal caving face with premining top layer.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Baobin Gao ◽  
Chuangnan Ren ◽  
Qun Dong ◽  
Liwei Chen

In order to study the dynamic characteristics and microseismic distribution in the mining process of roadway with high gas and wide coal pillar, combined with the two dynamic events of N2105 working face in Yuwu Coal Industry, theoretical analysis and field measurement research were carried out. According to the theory of structural mechanics and geomechanics, the causes of dynamic appearance are analyzed. Combined with the specific situation, the influence of mining depth, coal pillar width, gas pressure, and content on the dynamic performance is analyzed. Stress monitoring and microseismic monitoring are carried out on one side of coal seam. The results show that, with the increase of the mining distance, the backside roof of the goaf is prone to unbalanced fracture due to the lack of lateral stress, and the impact pressure generated is used for the reserved protective coal pillar behind the goaf, causing the floor heave of coal seam. The combined stress generated by the anticlinal structure below the working face interacts with the abutment pressure of the working face to produce superposition effect, which promotes the occurrence of dynamic appearance. The critical depth of rock burst in Yuwu Coal Industry is about 600m. The increase of coal elastic energy caused by roof subsidence is more uniform with the increase of coal pillar width. The decrease of gas pressure in coal seam promotes the rock burst disaster. The vertical stress of coal seam at one side of the working face shows different evolution characteristics along the trend and strike. The vertical stress of coal seam in the lateral range of 53 m is adjusted to different degrees and tends to be stable until 300 m behind the working face. The active microseismic area in the middle of the working face was located 50 m in front of the working face, and the microseismic activity continued to 30–50 m behind the working face. The active microseismic area at the side of the roadway was located 30 m in front of the working face, and the microseismic activity continued to 100–180 m behind the working face. The inflection point, where the stress in the elastic area of coal pillar increases sharply, corresponds to the active microseismic area, which indicates that the dynamic characteristics in the mining process of roadway with high gas and wide coal pillar are related to the distribution law of microseismic. This study has a certain guiding significance for optimizing the width of reserved coal pillar, monitoring the coal seam stress/microseismic, and understanding the dynamic disaster of coal and rock under complex conditions.


2020 ◽  
Author(s):  
Rui Gao ◽  
Tiejun Kuang ◽  
Yanqun Zhang ◽  
Wenyang Zhang ◽  
Chunyang Quan

Abstract During extra-thick coal seam mining, the high-level thick and hard strata are the main reason for the presence of a strong ground pressure in the working face; however, there is no active and effective control technology for high-level hard strata. This paper proposes the concept of ground fracturing hard roofs, and the physical simulation was used to study the control effect of ground fracturing on the strata breaking structure and energy release. The results showed that the ground fracturing changed the structural characteristics of the strata and reduced the energy release intensity and overburden movement spatial extent, which had a significant control effect on the ground pressure. The Datong mining area was selected as the engineering background, a ground horizontal well fracturing engineering test was conducted on site, and a 20-m-thick hard rock layer, which was 110 m vertically away from the coal seam, was determined as the fracturing target layer. On-site microseismic monitoring showed that the crack propagation length was up to 216 m, and the height was up to 50 m. On-site mine pressure monitoring showed that the roadway deformation was reduced to 100 mm, the periodic weighting characteristics of the hydraulic supports were not obvious, the ground pressure in the working face was significantly controlled, and the ground fracturing was successful. Ground fracturing changed the occurrence characteristics of the high-level hard strata, which is beneficial to ameliorate the stress environment of a working face and provide a new approach of hard rock control.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Nan Zhou ◽  
Hengfeng Liu ◽  
Jixiong Zhang ◽  
Hao Yan

Coal mining under hard roofs is jeopardized by rock burst-induced hazards. In this paper, mechanisms of hard roof rock burst events and key techniques for their prevention are analyzed from the standpoint of energy evolution within geological conditions typical of the hard roofs found in Chinese coal mines. Equations used to calculate the total strain energy densities of the coal-rock mass and hard roof working face are derived. Moreover, several failure-causing energy evolution rules are analyzed under various conditions. Various rock roof and coal mass thicknesses and strengths are considered, and a method of preventing hard roof rock burst events is proposed. The results obtained show that rock burst events can be facilitated by high stress concentrations, significant accumulation of strain energy in the coal-rock mass, and rapid energy release during roof breakage. The above conditions are subdivided into two classes: energy accumulation and energy release. The total strain energies of the coal mass and working faces in the roof are positively correlated with the roof thickness, roof strength, and coal mass strength. The coal mass strength primarily influences the overall accumulation of energy in the working face, and it also has the largest effect on the total energy release (i.e., the earthquake magnitude).


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Junhui Zhang ◽  
Hui Chen ◽  
Xiuzhi Shi ◽  
Weiming Guan ◽  
Xiaolong Sun

This paper presents a comprehensive study of the stress distribution and stability analysis of a uniquely shaped roadway having a steeply dipping hard roof. The coal seam and its roof have a certain impact tendency, which is the internal condition of rock burst. The syncline tectonic stress causes the original rock stress to reach a higher level. The large amount of coal produced in the coal mine and the large movement range of the upper strata cause the huge mining additional stress around the stope. The impact load caused by “cantilever beam” fracture of hard roof can induce and strengthen rock burst. Its engineering geological setting encompasses the mining process and surrounding rock conditions of No. 6 Coal Seam in the 2130 coal mine of Xinjiang. Numerical simulations with theoretical analysis and field measurements investigated a proposed new truss combined support scheme for implementation. A comparison was made of the differences in the state parameters of the road under the new and old support conditions. The application of the new combined support technology changed the form of the stress distribution around the road. Apart from the displacements of the two coal sidewalls, the new support system notably reduced the displacement of roof and floor by 67.8% and 83.6%, respectively. After the implementation of the new support scheme, the frequency of the original rock burst in the working face is greatly reduced, the surrounding rock control and field application effects also remained good, and personnel and equipment safety and production plan have a good guarantee.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4485 ◽  
Author(s):  
Feng Cui ◽  
Chong Jia ◽  
Xingping Lai

For the characteristics of overburden deformation and energy release under different mining sequences of close-distance coal seam groups, physical material similar simulation experiments were carried out, and comprehensive monitoring methods such as dial gauge, total station, micro-seismic monitor, and pressure sensor were used to test the Guangou Coal Mine. The comparative analysis of the initial mining and the upward recovery of the B4-1 coal seam is carried out to study the migration law, mine pressure distribution, and energy release characteristics of the overlying strata during W1145 mining face mining and residual coal mining. The results show that the maximum subsidence of surface and rock formation caused by re-mining of B4-1 residual coal is 0.96 m and 2.57 m respectively, which is 0.42 m and 0.47 m lower than that of W1145 working face. The boundary angle, moving angle, and rock stratum formed by the upward recovery of the remaining coal seam are 79.3°, 81.1°, and 67.5° respectively, which are smaller than the 80.9°, 82.3°, and 75.8° formed by the first mining. The cumulative development height of the fracture zone caused by upward mining is 115.7 m, which is 8.0% smaller than the cumulative development height of the downstream fracture zone of 125.8 m. When the up-level mining is carried out, the fragmentation effect of the rock layer below the key layer is strong, which makes the loosely broken rock block have a better supporting effect. Therefore, the residual coal mining time is longer than that of the first mining. The initial pressure step of the residual coal recovery is 139.2 m, and the average step of the cycle is 34.2 m, which is significantly larger than the 128.0 m and 26.0 m of the first mining. The loose rock strata that are disturbed by the upward recovery are more likely to be broken. Therefore, there are more micro-seismic events during the re-mining of the remaining coal. The B4-1 residual coals have a total of 945 incidents of re-seismic micro-seismic events, which is 292 more than the W1145 working face. After the B2 coal seam mining disturbance, the energy of some rock layers above the B4-1 coal seam is released, so that the micro-seismic energy caused by re-mining of the remaining coal seam is small. Through microseismic monitoring, it can be concluded that the accumulated energy in the process of upward re-mining of remaining coal seam is less than that in the process of downward mining of W1145 working face. Upward recovery is more likely to cause damage in the disturbed loose rock formation. Therefore, the frequency of micro-seismic events during the upward recovery is higher, and the partial energy release of the rock after the disturbance is caused, so that the source energy generated in the unit length of the upward recovery is smaller than the initial one.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Litong Dou ◽  
Ke Yang ◽  
Wenjie Liu ◽  
Xiaolou Chi ◽  
Zhijie Wen

The compound dynamic disaster of coal and gas outbursts and rockburst is a typical hazard jeopardizing the mining of the high gas content coal seam under a hard roof condition. In this study, the hard roof’s mechanism inducing this hazard is analyzed. Physical analog modeling experiments and in situ monitoring of mining-induced stress were performed during coal seam mining under a hard roof condition. The pattern of hard roof breakage effect on the stress-fissure field evolution was revealed. The elastic energy was released and propagated on both sides immediately after the hard roof breaking, leading to energy accumulation. Meanwhile, expansive roof collapse resulted in the intense weighting of the working face and rockburst. Thus, the coal and gas outburst occurred under the joint action of the impact energy generated by breaking the hard roof and gas expansion energy. In other words, the compound dynamic disaster happened. Synergistic stereoextraction integrating cross-seam drilling and along-seam drilling was combined with deep hole advanced presplitting blasting technology to cope with the compound dynamic disaster in the high gas coal seam under a hard roof condition.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Sitao Zhu ◽  
Decheng Ge ◽  
Fuxing Jiang ◽  
Cunwen Wang ◽  
Dong Li ◽  
...  

With the development of faults in many coalfields, many large faults will form a relatively independent area, forming regional tectonic stress concentration. Under the influence of mining, it is easy to induce fault activation, produce mine tremor, and then induce rock burst. Through field investigation, theoretical analysis, numerical simulation, and engineering verification, the overburden movement model of No. 3504 working face square and fault activation in Liangbaosi Coal Mine was established. The stress variation and energy release law of working face advance and fault area were analyzed, and the mechanism of rock burst under the coupling action of working face square and regional tectonic stress was revealed. The results show that the regional stress adjustment and fault activation are caused by the large-scale overall movement of overburden during the working face square, and there is a peak value of elastic energy release during the fault activation, which is easy to produce large energy mine earthquake. The energy level of the daily maximum energy event is higher than that of the initial mining stage in the square period, and the location of on-site large energy microseismic event is basically consistent with the predicted fault strike. The study provides a theoretical basis for the prevention and control of rock burst during the working face square under the condition of regional tectonic stress.


Sign in / Sign up

Export Citation Format

Share Document