scholarly journals Seasonal Performance Investigation for Residential Heat Pump System with Different Outdoor Heat Exchanger Designs

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4714
Author(s):  
Shehryar Ishaque ◽  
Man-Hoe Kim

A finned tube heat exchanger is a key component used as a condenser or an evaporator in residential air-conditioning (AC) and heat pump systems. The overall cycle performance of these systems is significantly affected by the heat exchanger’s geometric design. This study investigates outdoor heat exchanger designs with varying geometric parameters such as the fin pitch, number of tube rows, and tube length, and their effect on system performance based on seasonal energy efficiency ratio (SEER) and seasonal coefficient of performance (SCOP). Air face velocity profiles for each operating condition along the outdoor heat exchangers are determined using CFD, with subsequent cycle simulations for 10 different operating conditions. Results have been validated with the available experimental data. The number of tube rows, fin pitch, and length of tube have been varied from 2–10, 1.4–2.5 mm, and 800–2800 mm respectively. The numerical results reveals that SEER increases 3.21% while SCOP increases 5.32% up to fourth and fifth tube row respectively and remain unaffected thereafter. Similarly, SEER increases by 3.55% as the tube length is increased from 800–1800 mm, while it increases only 0.67% for 1800–2800 mm and the maximum variation of 4.32% has been found for SCOP. Moreover, increasing the fin pitch reduces SEER and SCOP (except for fin pitch from 1.4 to 1.8 mm). Finally, the performance of the system with four different fin configurations have also been investigated and it has been found that slit fins are more effective.

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1762 ◽  
Author(s):  
Zhe Wang ◽  
Fenghui Han ◽  
Yulong Ji ◽  
Wenhua Li

A marine seawater source heat pump is based on the relatively stable temperature of seawater, and uses it as the system’s cold and heat source to provide the ship with the necessary cold and heat energy. This technology is one of the important solutions to reduce ship energy consumption. Therefore, in this paper, the heat exchanger in the CO2 heat pump system with graphene nano-fluid refrigerant is experimentally studied, and the influence of related factors on its heat transfer enhancement performance is analyzed. First, the paper describes the transformation of the heat pump system experimental bench, the preparation of six different mass concentrations (0~1 wt.%) of graphene nanofluid and its thermophysical properties. Secondly, this paper defines graphene nanofluids as beneficiary fluids, the heat exchanger gains cold fluid heat exergy increase, and the consumption of hot fluid heat is heat exergy decrease. Based on the heat transfer efficiency and exergy efficiency of the heat exchanger, an exergy transfer model was established for a seawater source of tube heat exchanger. Finally, the article carried out a test of enhanced heat transfer of heat exchangers with different concentrations of graphene nanofluid refrigerants under simulated seawater constant temperature conditions and analyzed the test results using energy and an exergy transfer model. The results show that the enhanced heat transfer effect brought by the low concentration (0~0.1 wt.%) of graphene nanofluid is greater than the effect of its viscosity on the performance and has a good exergy transfer effectiveness. When the concentration of graphene nanofluid is too high, the resistance caused by the increase in viscosity will exceed the enhanced heat transfer gain brought by the nanofluid, which results in a significant decrease in the exergy transfer effectiveness.


2011 ◽  
Vol 374-377 ◽  
pp. 398-404 ◽  
Author(s):  
Ying Ning Hu ◽  
Ban Jun Peng ◽  
Shan Shan Hu ◽  
Jun Lin

A hot-water and air-conditioning (HWAC) combined ground sourse heat pump(GSHP) system with horizontal ground heat exchanger self-designed and actualized was presented in this paper. The heat transfer performance for the heat exchanger of two different pipe arrangements, three layers and four layers, respectively, was compared. It showed that the heat exchange quantity per pipe length for the pipe arrangement of three layers and four layers are 18.0 W/m and 15.0 W/m. The coefficient of performance (COP) of unit and system could remain 4.8 and 4.2 as GSHP system for heating water, and the COP of heating and cooling combination are up to 8.5 and 7.5, respectively. The power consumption of hot-water in a whole year is 9.0 kwh/t. The economy and feasibility analysis on vertical and horizontal ground heat exchanger were made, which showed that the investment cost per heat exchange quantity of horizontal ground heat exchanger is 51.4% lower than that of the vertical ground heat exchanger, but the occupied area of the former is 7 times larger than the latter's.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2642 ◽  
Author(s):  
Yi Zhang ◽  
Guanmin Zhang ◽  
Aiqun Zhang ◽  
Yinhan Jin ◽  
Ruirui Ru ◽  
...  

Frost layer on the outdoor air heat exchanger surface in an air-source heat pump (ASHP) can decrease the system coefficient of performance (COP). Although the common defrosting and anti-frosting methods can improve the COP, the periodic defrosting not only reduces the system energy efficiency but also deteriorates the indoor environment. To solve these problems, it is necessary to clearly understand the frosting phenomenon and to achieve the system frost-free operation. This paper focused firstly on the analyses of frosting pathways and frosting maps. Followed by summarizing the characteristics of frost-free technologies. And then the performances of two types of frost-free ASHP (FFASHP) systems were reviewed, and the exergy and economic analysis of a FFASHP heating system were carried out. Finally, the existing problems related to the FFASHP technologies were proposed. Results show that the existing frosting maps need to be further improved. The FFASHP systems can not only achieve continuous frost-free operation but reduce operating cost. And the total COP of the FFASHP heating system is approximately 30–64% higher than that of the conventional ASHP system under the same frosting conditions. However, the investment cost of the FFASHP system increases, and its reliability also needs further field test in a wider frosting environment. In the future, combined with a new frosting map, the control strategy for the FFASHP system should be optimized.


Author(s):  
Hee Jeong Kang ◽  
Zhen Huan Wang ◽  
Jun Son ◽  
Sun-Joon Byun ◽  
Young-Chul Kwon

Developing high performance HVAC system using natural refrigerants including carbon dioxide (CO2) has been important in respect of environmental preservation and associated technologies. Thus studies to optimize the HVAC (heating ventilation air conditioner) system using natural refrigerants through clarifying the cycle performance characteristics are necessary. The CO2 heat pump system using air and water sources was consisted to examine its performance characteristics, and by varying conditions of several factors that affect or characterize the system performance like the amount of refrigerant charge, EEV (electronic expansion valve) opening, and internal heat exchanger under cooling mode. The performance characteristics of CO2 heat pump system were tested by using an air enthalpy calorimeter. In the case of the CO2 heat pump system without internal heat exchanger, the opening of #3 EEV and #4 EEV was 60% and refrigerant charge amount was 5,600g. However, in the case of that with internal heat exchanger, the best performance was obtained when the opening of #2 EEV is 20%. From the present studies, it was observed that the performance variation and operational characteristics of the CO2 heat pump system were affected by design factors like refrigerant charge amount, EEV opening, and internal heat exchanger and thereby, the configuration on an optimal operation conditions of the system was enabled.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 553 ◽  
Author(s):  
Muhammad Kashif Shahzad ◽  
Mirza Abdullah Rehan ◽  
Muzaffar Ali ◽  
Azeem Mustafa ◽  
Zafar Abbas ◽  
...  

This paper presents an experimental evaluation of a closed loop lake water heat pump (LWHPs) system based on the slinky coiled configuration. Initially, a mathematical model is developed in the Engineering Equation Solver (EES) for the heat pump system and the submerged coils in a lake. System performance is determined for the submerged slinky copper coils under the various operating conditions. Afterwards, parametric analysis is performed considering different influencing parameters, such as the lake water temperature, ambient temperature, and mass flow rate of the circulating fluid at constant lake depth of 4 ft. The experimental setup is developed for 3.51 kW cooling capacity after cooling load calculation for a small room. In the current study, slinky copper coils are used to exchange heat with lake water. The experimental setup is installed in Taxila, Pakistan, and the system’s performance is analyzed during selected days. After experimentation based on hourly and daily operation characteristics, it is observed that the lake water temperature has significant influence on the heat transfer rate between slinky coil and lake water. While the lake water temperature in summer decreases and increases in winter with the depth. The resulted daily average coefficient of performance (COP) of the system is within the range of 3.24–3.46 during the selected days of cooling season. Based on these results, it can be concluded that the LWHP systems can be considered a viable solution for Pakistan having a well-established canal system.


Author(s):  
Tugba Gurler ◽  
Theo Elmer ◽  
Yuanlong Cui ◽  
Siddig Omer ◽  
Saffa Riffat

Abstract The case study presented in this paper is an innovative ground source heat pump (GSHP) system constituted by a hybrid Photovoltaic Thermal (PVT) solar system for poultry houses. Farmers tend to not to apply GSHPs because of the high prices of excavation and time consumption. The innovative heat pump system assessed in this study comprises of a new type of heat exchangers; a thin-tube solar polyethylene heat exchanger installed between roof tiles and PV panels and a novel vertical ground heat exchanger to utilize the heat stored in the soil. The heating system applied to a poultry house are monitored and evaluated under a variety of environmental and operating conditions to achieve annual/long-term efficiency of the heating system in Kirton, UK. The maximum heating demand of the poultry house is determined 34.4 MWh/PC while the minimum is 11,1 MWh/PC. The monitored results show that the heat pump produced 15.02 MWh of thermal energy per annum. Solar PV and heat pump worked very well together with solar PV covering all the heat pump’s annual electrical energy requirement and generated 8.74 MWh of extra electricity exported to the grid. The seasonal coefficient of performance is found 3.73 through a year. The novel PVT-GSHP heating system is a very promising solution for high fossil fuel consumption in the agriculture industry and the energy savings of the whole system can be noticeably increased dependent up on the system controlling.


2011 ◽  
Vol 19 (04) ◽  
pp. 273-284 ◽  
Author(s):  
SANKAR PADHMANABHAN ◽  
LORENZO CREMASCHI ◽  
DANIEL FISHER

This paper presents a comparison of frost and defrost cycling performance between a microchannel heat exchanger with louvered fin and a fin-and-tube heat exchanger with straight fins employed as outdoor coils of a 14 kW (48 000 Btu/h) heat pump system. In addition to temperature, pressure and flow rate measurements taken at various locations of the systems, the fin-base and tube wall surface temperature were also recorded by using fine-gauge precalibrated thermocouples on the coils. Further, load cells were used to measure the mass of frost accumulation during heating tests. Data showed that the frosting time of the microchannel heat exchanger is more than 50% shorter than for the fin-and-tube heat exchanger, which is chosen as the baseline system. The average heating capacity and system performance over a frost–defrost cycle are also lower for the system with microchannel heat exchangers. Higher frost growth rate was mainly due to augmented temperature difference between air and the surface of the heat exchanger, and preferential frost nucleation sites on the louvered fins and microchannel tubes. Removal of residual water in the microchannel heat exchanger did not improve the frost performance significantly. Blowing nitrogen on the microchannel coil after defrost removed any visible water retained in the coil after the defrost cycle but the cycle time increased only by 4% with respect to wet and frost conditions. The cycle time of the same microchannel coil starting with dry conditions was about 60% longer than the cycle time in wet and frost conditions.


Sign in / Sign up

Export Citation Format

Share Document