scholarly journals Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1625 ◽  
Author(s):  
Massimo Mariello ◽  
Elisa Scarpa ◽  
Luciana Algieri ◽  
Francesco Guido ◽  
Vincenzo Mariano Mastronardi ◽  
...  

Triboelectric nanogenerators (TENGs) have recently become a powerful technology for energy harvesting and self-powered sensor networks. One of their main advantages is the possibility to employ a wide range of materials, especially for fabricating inexpensive and easy-to-use devices. This paper reports the fabrication and preliminary characterization of a novel flexible triboelectric nanogenerator which could be employed for driving future low power consumption wearable devices. The proposed TENG is a single-electrode device operating in contact-separation mode for applications in low-frequency energy harvesting from intermittent tapping loads involving the human body, such as finger or hand tapping. The novelty of the device lies in the choice of materials: it is based on a combination of a polysiloxane elastomer and a poly (para-xylylene). In particular, the TENG is composed, sequentially, of a poly (dimethylsiloxane) (PDMS) substrate which was made porous and rough with a steam-curing step; then, a metallization layer with titanium and gold, deposited on the PDMS surface with an optimal substrate–electrode adhesion. Finally, the metallized structure was coated with a thin film of parylene C serving as friction layer. This material provides excellent conformability and high charge-retaining capability, playing a crucial role in the triboelectric process; it also makes the device suitable for employment in harsh, wet environments owing to its inertness and barrier properties. Preliminary performance tests were conducted by measuring the open-circuit voltage and power density under finger tapping (~2 N) at ~5 Hz. The device exhibited a peak-to-peak voltage of 1.6 V and power density peak of 2.24 mW/m2 at ~0.4 MΩ. The proposed TENG demonstrated ease of process, simplicity, cost-effectiveness, and flexibility.

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 366
Author(s):  
Yang Xia ◽  
Yun Tian ◽  
Lanbin Zhang ◽  
Zhihao Ma ◽  
Huliang Dai ◽  
...  

We present an optimized flutter-driven triboelectric nanogenerator (TENG) for wind energy harvesting. The vibration and power generation characteristics of this TENG are investigated in detail, and a low cut-in wind speed of 3.4 m/s is achieved. It is found that the air speed, the thickness and length of the membrane, and the distance between the electrode plates mainly determine the PTFE membrane’s vibration behavior and the performance of TENG. With the optimized value of the thickness and length of the membrane and the distance of the electrode plates, the peak open-circuit voltage and output power of TENG reach 297 V and 0.46 mW at a wind speed of 10 m/s. The energy generated by TENG can directly light up dozens of LEDs and keep a digital watch running continuously by charging a capacitor of 100 μF at a wind speed of 8 m/s.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Kai Tao ◽  
Zhensheng Chen ◽  
Haiping Yi ◽  
Ruirong Zhang ◽  
Qiang Shen ◽  
...  

AbstractFlexible, compact, lightweight and sustainable power sources are indispensable for modern wearable and personal electronics and small-unmanned aerial vehicles (UAVs). Hierarchical honeycomb has the unique merits of compact mesostructures, excellent energy absorption properties and considerable weight to strength ratios. Herein, a honeycomb-inspired triboelectric nanogenerator (h-TENG) is proposed for biomechanical and UAV morphing wing energy harvesting based on contact triboelectrification wavy surface of cellular honeycomb structure. The wavy surface comprises a multilayered thin film structure (combining polyethylene terephthalate, silver nanowires and fluorinated ethylene propylene) fabricated through high-temperature thermoplastic molding and wafer-level bonding process. With superior synchronization of large amounts of energy generation units with honeycomb cells, the manufactured h-TENG prototype produces the maximum instantaneous open-circuit voltage, short-circuit current and output power of 1207 V, 68.5 μA and 12.4 mW, respectively, corresponding to a remarkable peak power density of 0.275 mW cm−3 (or 2.48 mW g−1) under hand pressing excitations. Attributed to the excellent elastic property of self-rebounding honeycomb structure, the flexible and transparent h-TENG can be easily pressed, bent and integrated into shoes for real-time insole plantar pressure mapping. The lightweight and compact h-TENG is further installed into a morphing wing of small UAVs for efficiently converting the flapping energy of ailerons into electricity for the first time. This research demonstrates this new conceptualizing single h-TENG device's versatility and viability for broad-range real-world application scenarios.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1462
Author(s):  
Zhensheng Chen ◽  
Jiahao Yu ◽  
Haozhe Zeng ◽  
Zhao Chen ◽  
Kai Tao ◽  
...  

With the rising demand for wearable, multifunctional, and flexible electronics, plenty of efforts aiming at wearable devices have been devoted to designing sensors with greater efficiency, wide environment tolerance, and good sustainability. Herein, a thin film of double-network ionic hydrogel with a solution replacement treatment method is fabricated, which not only possesses excellent stretchability (>1100%) and good transparency (>80%), but also maintains a wide application temperature range (−10~40 °C). Moreover, the hydrogel membrane further acts as both the flexible electrode and a triboelectric layer, with a larger friction area achieved through a micro-structure pattern method. Combining this with a corona-charged fluorinated ethylene propylene (FEP) film, an electret/hydrogel-based tactile sensor (EHTS) is designed and fabricated. The output performance of the EHTS is effectively boosted by 156.3% through the hybrid of triboelectric and electrostatic effects, which achieves the open-circuit peak voltage of 12.5 V, short-circuit current of 0.5 μA, and considerable power of 4.3 μW respectively, with a mentionable size of 10 mm × 10 mm × 0.9 mm. The EHTS also demonstrates a stable output characteristic within a wide range of temperature tolerance from −10 to approximately 40 °C and can be further integrated into a mask for human breath monitoring, which could provide for a reliable healthcare service during the COVID-19 pandemic. In general, the EHTS shows excellent potential in the fields of healthcare devices and wearable electronics.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1939
Author(s):  
Muhammad Bilawal Khan ◽  
Hassan Saif ◽  
Yoonmyung Lee

A fully integrated piezoelectric energy harvesting interface is proposed for harvesting energy from irregular human motion. To handle irregular pulse inputs generated by the piezoelectric transducer (PZT), the proposed harvesting interface includes a wake-up controller that activates the harvesting interface only when human motion is detected and deformation is applied on the piezoelectric material, thereby keeping static power loss low. The PZT output voltage is increased to its peak voltage by removing any type of external load capacitance seen by the PZT during its deformation. Once the peak voltage is detected, a multi-voltage conversion-ratio-based switched-capacitor circuit is activated to transfer PZT-generated energy to the battery in multiple ratio steps to maximize the conversion efficiency, with the help of a carefully designed harvesting controller. To deal with open-circuit voltages (VOCS) higher than the maximum voltage tolerated (VMAX) by available technology, capacitive partial electric charge extraction is activated every time the PZT output voltage approaches the VMAX. The proposed harvesting interface extracts 3.37 times more energy than a conventional full-bridge rectifier-based harvesting scheme.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1689
Author(s):  
Xi Han ◽  
Dongjie Jiang ◽  
Xuecheng Qu ◽  
Yuan Bai ◽  
Yu Cao ◽  
...  

Electronic skin that is deformable, self-healable, and self-powered has high competitiveness for next-generation energy/sense/robotic applications. Herein, we fabricated a stretchable, self-healable triboelectric nanogenerator (SH-TENG) as electronic skin for energy harvesting and tactile sensing. The elongation of SH-TENG can achieve 800% (uniaxial strain) and the SH-TENG can self-heal within 2.5 min. The SH-TENG is based on the single-electrode mode, which is constructed from ion hydrogels with an area of 2 cm × 3 cm, the output of short-circuit transferred charge (Qsc), open-circuit voltage (Voc), and short-circuit current (Isc) reaches ~6 nC, ~22 V, and ~400 nA, and the corresponding output power density is ~2.9 μW × cm−2 when the matching resistance was ~140 MΩ. As a biomechanical energy harvesting device, the SH-TENG also can drive red light-emitting diodes (LEDs) bulbs. Meanwhile, SH-TENG has shown good sensitivity to low-frequency human touch and can be used as an artificial electronic skin for touch/pressure sensing. This work provides a suitable candidate for the material selection of the hydrogel-based self-powered electronic skin.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1120
Author(s):  
Dae Sol Kong ◽  
Jae Yeon Han ◽  
Young Joon Ko ◽  
Sang Hyeok Park ◽  
Minbaek Lee ◽  
...  

While sliding-mode triboelectric nanogenerators (S-TENGs) have been considered as one of the most promising devices for rotational energy harvesting, their inherently poor durability has been a serious bottleneck for applications. Herein, we report a three-dimensional kirigami TENG as a highly efficient and durable rotational energy harvesting device. The kirigami TENG consisted of cube-shaped paper, aluminum (Al) foil electrode and polytetrafluoroethylene (PTFE) polymer film, and converted rotational motion into multiple folding-unfolding vibrations. The rotation-folding (R-F) kirigami TENG generated an open-circuit voltage of 31 V, a short-circuit current of 0.67 μA and an instantaneous power (power density) of 1.2 μW (0.13 μW/cm2) at 200 rpm, which was sufficient to turn on 25 light-emitting diodes and a thermo-hygrometer. The triboelectric outputs of the R-F kirigami TENG were only slightly decreased even after 288,000 continuous rotations, i.e., the output remained at 86% of its initial value. This work demonstrates that an R-F kirigami TENG could be a plausible candidate to efficiently harvest various forms of rotational energy with a long-term durability.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 613 ◽  
Author(s):  
Tao Chen ◽  
Qiongfeng Shi ◽  
Kunpu Li ◽  
Zhan Yang ◽  
Huicong Liu ◽  
...  

Triboelectric nanogenerator (TENG) is a promising technology because it can harvest energy from the environment to enable self-sustainable mobile and wearable electronic devices. In this work, we present a flexible touch pad capable of detecting the contact location of an object and generating substantial energy simultaneously based on the coupling of triboelectric effects and electrostatic induction. The touch pad consists of Polytetrafluoroethylene (PTFE) thin film, multiple Aluminum (Al) electrodes and Polyethylene terephthalate (PET) layers, which can be achieved through low cost, simplified and scalable fabrication process. Different from the conventional multi-pixel-based positioning sensor (i.e., large array of sensing elements and electrodes), the analogue method proposed here is used to implement the positioning function with only four electrodes. Position location can achieve a detecting resolution of as small as 1.3 mm (the size of locating layer is 7.5 cm × 7.5 cm). For the energy harvesting part, a multilayer structure is designed to provide higher current output. The open circuit voltage of the device is around 420 V and the short circuit current can reach up to 6.26 µA with current density of 0.25 µA/cm2. The maximum output power obtained is approximately 10 mW, which is 0.4 mW/cm2. The flexibility and significantly reduced number of electrodes enable the proposed touch pad to be readily integrated into portable electronic devices, such as intelligent robots, laptops, healthcare devices, and environmental surveys, etc.


2020 ◽  
Vol 8 (16) ◽  
pp. 7880-7888 ◽  
Author(s):  
Leilei Zhao ◽  
Liqiang Liu ◽  
Xiya Yang ◽  
Hongxin Hong ◽  
Qianming Yang ◽  
...  

A maximum power density of 1.838 W m−2 is achieved and 30 LEDs can be lighted up by the cumulative water droplets driven freestanding triboelectric nanogenerator demonstrating the great potential for hydrodynamic energy harvesting from rain.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 593 ◽  
Author(s):  
Jihoon Chung ◽  
Deokjae Heo ◽  
Banseok Kim ◽  
Sangmin Lee

Energy harvesting is a method of converting energy from ambient environment into useful electrical energy. Due to the increasing number of sensors and personal electronics, energy harvesting technologies from various sources are gaining attention. Among energy-harvesting technologies, triboelectric nanogenerator (TENG) was introduced as a device that can effectively generate electricity from mechanical motions by contact-electrification. Particularly, liquid-solid contact TENGs, which use the liquid itself as a triboelectric material, can overcome the inevitable friction wear between two solid materials. Using a commercial aerosol hydrophobic spray, liquid-solid contact TENGs, with a superhydrophobic surface (contact angle over 160°) can be easily fabricated with only a few coating processes. To optimize the fabrication process, the open-circuit voltage of sprayed superhydrophobic surfaces was measured depending on the number of coating processes. To demonstrate the simple fabrication and applicability of this technique on random 3D surfaces, a liquid-solid contact TENG was fabricated on the brim of a cap (its complicated surface structure is due to the knitted strings). This simple sprayed-on superhydrophobic surface can be a possible solution for liquid-solid contact TENGs to be mass produced and commercialized in the future.


Sign in / Sign up

Export Citation Format

Share Document