scholarly journals Transient Thermal Analysis of a Li-Ion Battery Module for Electric Cars Based on Various Cooling Fan Arrangements

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2387
Author(s):  
Van-Thanh Ho ◽  
Kyoungsik Chang ◽  
Sang Wook Lee ◽  
Sung Han Kim

This paper presents a three-dimensional modeling approach to simulate the thermal performance of a Li-ion battery module for a new urban car. A single-battery cell and a 52.3 Ah Li-ion battery module were considered, and a Newman, Tiedemann, Gu, and Kim (NTGK) model was adopted for the electrochemical modeling based on input parameters from the discharge experiment. A thermal–electrochemical coupled method was established to provide insight into the temperature variations over time under various discharge conditions. The distribution temperature of a single-battery cell was predicted accurately. Additionally, in a 5C discharge condition without a cooling system, the temperature of the battery module reached 114 °C, and the temperature difference increased to 25 °C under a 5C discharging condition. This condition led to the activation of thermal runaway and the possibility of an explosion. However, the application of a reasonable fan circulation and position reduced the maximum temperature to 49.7 °C under the 5C discharge condition. Moreover, accurate prediction of the temperature difference between cell areas during operation allowed for a clear understanding and design of an appropriate fan system.

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8094
Author(s):  
Bichao Lin ◽  
Jiwen Cen ◽  
Fangming Jiang

It is important for the safety and good performance of a Li-ion battery module/pack to have an efficient thermal management system. In this paper, a battery thermal management system with a two-phase refrigerant circulated by a pump was developed. A battery module consisting of 240 18650-type Li-ion batteries was fabricated based on a finned-tube heat-exchanger structure. This structural design offers the potential to reduce the weight of the battery thermal management system. The cooling performance of the battery module was experimentally studied under different charge/discharge C-rates and with different refrigerant circulation pump operation frequencies. The results demonstrated the effectiveness of the cooling system. It was found that the refrigerant-based battery thermal management system could maintain the battery module maximum temperature under 38 °C and the temperature non-uniformity within 2.5 °C for the various operation conditions considered. The experimental results with 0.5 C charging and a US06 drive cycle showed that the thermal management system could reduce the maximum temperature difference in the battery module from an initial value of 4.5 °C to 2.6 °C, and from the initial 1.3 °C to 1.1 °C, respectively. In addition, the variable pump frequency mode was found to be effective at controlling the battery module, functioning at a desirable constant temperature and at the same time minimizing the pump work consumption.


2019 ◽  
Vol 814 ◽  
pp. 307-313
Author(s):  
Gu Yu Yu ◽  
Sum Wai Chiang ◽  
Wei Chen ◽  
Hong Da Du

A novel thermal management system (TMS) for Li-ion battery module using phase change material (PCM) and cooling water as the heat dissipation source to control battery temperature rise has been developed. Graphite sheets were applied to compensate low thermal conductivity of battery and PCM and improve temperature uniformity of the batteries. One discharge (1C rate)-charge (2C rate) circle was applied in battery modules to test the effectiveness of this TMS. A three dimensional numerical model of the battery module with the TMS was conducted. The results show that this TMS basically meets the demand about the maximum temperature difference of battery module and totally keeps the maximum temperature within the optimum operating temperature range (≤45°C).


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3881
Author(s):  
Hamidreza Behi ◽  
Danial Karimi ◽  
Rekabra Youssef ◽  
Mahesh Suresh Patil ◽  
Joeri Van Mierlo ◽  
...  

Lithium-ion (Li-ion) batteries have emerged as a promising energy source for electric vehicle (EV) applications owing to the solution offered by their high power, high specific energy, no memory effect, and their excellent durability. However, they generate a large amount of heat, particularly during the fast discharge process. Therefore, a suitable thermal management system (TMS) is necessary to guarantee their performance, efficiency, capacity, safety, and lifetime. This study investigates the thermal performance of different passive cooling systems for the LTO Li-ion battery cell/module with the application of natural convection, aluminum (Al) mesh, copper (Cu) mesh, phase change material (PCM), and PCM-graphite. Experimental results show the average temperature of the cell, due to natural convection, Al mesh, Cu mesh, PCM, and PCM-graphite compared with the lack of natural convection decrease by 6.4%, 7.4%, 8.8%, 30%, and 39.3%, respectively. In addition, some numerical simulations and investigations are solved by COMSOL Multiphysics®, for the battery module consisting of 30 cells, which is cooled by PCM and PCM-graphite. The maximum temperature of the battery module compared with the natural convection case study is reduced by 15.1% and 17.3%, respectively. Moreover, increasing the cell spacing in the battery module has a direct effect on temperature reduction.


Author(s):  
Shahabeddin K. Mohammadian ◽  
Yuwen Zhang

Thermal management of Li-ion batteries utilizing internal cooling method is the promising way to keep these batteries in an appropriate temperature range and to improve the temperature uniformity. In this study, three-dimensional transient thermal analysis was carried out to investigate the effects of size of embedded microchannels inside the electrodes on the thermal and electrical performances of a Li-ion battery cell. Based on the ratio of the width of microchannels to the width of the cell, different cases were designed; from the ratio of 0 (without any microchannels) to the ratio of 0.5. The results showed that increasing the size of the microchannels from the width ratio of 0 to the width ratio of 0.5 can reduce the maximum temperature inside the battery cell up to 11.22 K; it can also improve the temperature uniformity inside the battery cell. Increasing the electrolyte flow inlet temperature from 288.15 K to 308.15 K can enhance the temperature uniformity inside the battery and the cell voltage up to 33.20% and 2.79%, respectively. Increasing the electrolyte flow inlet velocity from 1 cm/s to 10 cm/s can reduce the maximum temperature inside the battery cell up to 8.09 K.


Author(s):  
Matteo Muratori ◽  
Ning Ma ◽  
Marcello Canova ◽  
Yann Guezennec

Li-ion batteries are today considered the prime solution as energy storage system for EV/PHEV/HEV, due to their high specific energy and power. Since their performance, life and reliability are influenced by the operating temperature, great interest has been devoted to study different cooling solutions and control algorithms for thermal management. In this context, this paper presents a computationally efficient modeling approach to characterize the internal temperature distribution of a Li-ion battery cell, conceived to serve as a tool to aid the design of cooling systems and the development of thermal management systems for automotive battery packs. The model is developed starting from the unsteady heat diffusion equation, for which an analytical solution is obtained through the integral transform method. First, a general one-dimensional thermal model is developed to predict the temperature distribution inside a prismatic Li-ion battery cell under different boundary conditions. Then, a specific case with convective boundary conditions is studied with the objective of characterizing a cell cooled by a forced air flow. To characterize the effects of the cooling system on the temperature distribution within the cell, the one-dimensional solution is then extended to a 1+1D model that accounts for the variability of the boundary conditions in the flow direction. The calibration and validation of the specific model presented will be presented, adopting a detailed 2D FEM simulator as a benchmark.


Author(s):  
Satadru Dey ◽  
Beshah Ayalew

This paper proposes and demonstrates an estimation scheme for Li-ion concentrations in both electrodes of a Li-ion battery cell. The well-known observability deficiencies in the two-electrode electrochemical models of Li-ion battery cells are first overcome by extending them with a thermal evolution model. Essentially, coupling of electrochemical–thermal dynamics emerging from the fact that the lithium concentrations contribute to the entropic heat generation is utilized to overcome the observability issue. Then, an estimation scheme comprised of a cascade of a sliding-mode observer and an unscented Kalman filter (UKF) is constructed that exploits the resulting structure of the coupled model. The approach gives new real-time estimation capabilities for two often-sought pieces of information about a battery cell: (1) estimation of cell-capacity and (2) tracking the capacity loss due to degradation mechanisms such as lithium plating. These capabilities are possible since the two-electrode model needs not be reduced further to a single-electrode model by adding Li conservation assumptions, which do not hold with long-term operation. Simulation studies are included for the validation of the proposed scheme. Effect of measurement noise and parametric uncertainties is also included in the simulation results to evaluate the performance of the proposed scheme.


2016 ◽  
Author(s):  
Hiroki Nagai ◽  
Masahiro Morita ◽  
Koichi Satoh

2019 ◽  
Vol 25 (36) ◽  
pp. 253-262 ◽  
Author(s):  
Andreas Nyman ◽  
Tommy G. Zavalis ◽  
Ragna Elger ◽  
Maårten Behm ◽  
Göran Lindbergh

Sign in / Sign up

Export Citation Format

Share Document