scholarly journals Evaluation of Photovoltaic and Battery Storage Effects on the Load Matching Indicators Based on Real Monitored Data

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2727 ◽  
Author(s):  
Sofiane Kichou ◽  
Nikolaos Skandalos ◽  
Petr Wolf

This paper reports on the electrical performance of two bloc-of-flats buildings located in Prague, Czech Republic. Measured data of electrical consumption were used to investigate the effect of photovoltaic (PV) and battery energy storage system (BESS) systems on the overlap between generation and demand. Different PV array configurations and battery storage capacities were considered. Detailed solar analysis was carried out to analyze the solar potential of the building and to assess the PV electricity production. The evaluation of the building performance was done through MATLAB simulations based on one-year monitored data. The simulation results were used for the calculation of the load matching indices: namely, the self-consumption and self-sufficiency. It was found that optimized array tilt and orientation angles can effectively contribute to a better adjustment between electricity demand and solar PV generation. The addition of a façade PV system increases significantly the PV generation and thus the load matching during winter months. Mismatch is further reduced by using the energy flexibility provided by the BESS. Depending on the PV size and BESS capacity, the self-consumption and the self-sufficiency of the building could increase from 55% to 100% and from 24% up to 68%, respectively.

Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 177 ◽  
Author(s):  
Sarvar Nengroo ◽  
Muhammad Kamran ◽  
Muhammad Ali ◽  
Do-Hyun Kim ◽  
Min-Soo Kim ◽  
...  

The increasing world human population has given rise to the current energy crisis and impending global warming. To meet the international environmental obligations, alternative technological advances have been made to harvest clean and renewable energy. The solar photovoltaics (PV) system is a relatively new concept of clean technology that can be employed as an autonomous power source for a range of off-grid applications. In this study, the dual battery storage system is coupled with a solar PV system and a low voltage grid, benefitting from the feed-in tariff (FIT) policy. The main outcomes of this study are: (I) A novel dual battery storage system for the optimal use of the PV system/energy is proposed; (II) The problem is formulated in the form of a mathematical model, and a cost function is devised for effective cost calculation; (III) An optimal cost analysis is presented for the effective use of PV energy; (IV) real-time data of a solar PV taken from the owner and the demand profile collected from the user is applied to the proposed approach, with United Kingdom (UK) tariff incentives. This system works in a loop by charging one system from the solar PV for one day, and discharging the other system. This model gives certainty that power is exported to the grid when the solar PV generates an excess amount; batteries are utilized during the peak hours, and power is purchased when the demand is not met by the batteries, or when the demand is higher than the generation. This study examined the economic knowledge of solar PV and battery storage systems by considering the FIT incentives.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5678
Author(s):  
Alessandro Franco ◽  
Giacomo Cillari

Food stores and supermarkets are buildings, often with rather similar structures characterized by large surfaces and a single floor, that are particularly energy intensive. The energy uses associated with them are mainly electrical, in connection with air conditioning and food refrigeration. These buildings are particularly interesting for a systematic application of photovoltaic (PV) generation technology. After an analysis of the main energy consumption parameters and of the most common benchmarking approaches, standard solutions for the sizing of photovoltaic systems are proposed based on different design objectives, highlighting the potential of each solution proposed. Two specific indicators are defined for the sizing processes. The methodology is tested with reference to two different stores under the zero grid-injection restriction. The results showed how the degree of self-sufficiency for a supermarket obtained with a PV plant can be of the order of 20% in cases without storage system and can be increased over 50% and up to 70–75% but only using relevant battery storage dimensions.


Implementation of modified AHP coupled with MOORA methods for modeling and optimization of solar photovoltaic (PV)-pumped hydro energy storage (PHS) system parameter is presented in this chapter. Work optimized the parameters, namely unmet energy (UE), size of PV-panel, and volume of upper reservoir (UR), to get economic cost of energy (COE) and excess energy (EE). The trail no.11 produces the highest assessment values compared to the other trails and provides EE as 16.19% and COE as 0.59 $/kWh for PV-PHS. ANOVA and parametric study is also performed to determine the significance of the parameters for PV-PHS performance. Investigation results indicate the effectiveness and significant potential for modeling and optimization of PV-PHS system and other solar energy systems.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4820 ◽  
Author(s):  
Moiz Masood Syed ◽  
Gregory M. Morrison ◽  
James Darbyshire

More than 2 million houses in Australia have installed solar photovoltaic (PV) systems; however, apartment buildings have adopted a low percentage of solar PV and battery storage installations. Given that grid usage reduction through PV and battery storage is a primary objective in most residential buildings, apartments have not yet fully benefited from installations of such systems. This research presents shared microgrid configurations for three apartment buildings with PV and battery storage and evaluates the reduction in grid electricity usage by analyzing self-sufficiency. The results reveal that the three studied sites at White Gum Valley achieved an overall self-sufficiency of more than 60%. Owing to the infancy of the shared solar and battery storage market for apartment complexes and lack of available data, this study fills the research gap by presenting preliminary quantitative findings from implementation in apartment buildings.


2018 ◽  
Vol 19 (4) ◽  
pp. 790-816 ◽  
Author(s):  
Paula Fonseca ◽  
Pedro Moura ◽  
Humberto Jorge ◽  
Aníbal de Almeida

Purpose The purpose of this study was to design a renovation plan for a university campus building (Department of Electrical and Computer Engineering) with the aim to achieve nearly zero energy performance, ensuring a low specific demand (lower than 44 kWh/m2) and a high level of on-site renewable generation (equivalent to more than 20 per cent of the energy demand). Design/methodology/approach The baseline demand was characterized based on energy audits, on smart metering data and on the existing building management system data, showing a recent reduction of the electricity demand owing to some implemented measures. The renovation plan was then designed with two main measures, the total replacement of the actual lighting by LEDs and the installation of a photovoltaic system (PV) with 78.8 kWp coupled with an energy storage system with 100 kWh of lithium-ion batteries. Findings The designed renovation achieved energy savings of 20 per cent, with 27.5 per cent of the consumed energy supplied by the PV system. This will ensure a reduction of the specific energy of the building to only 30 kWh/m2, with 42.4 per cent savings on the net-energy demand. Practical implications The designed renovation proves that it is possible to achieve nearly zero energy goals with cost-effective solutions, presenting the lighting renovation and the solar PV generation system a payback of 2.3 and 6.9 years, respectively. Originality/value This study innovated by defining ambitious goals to achieve nearly zero energy levels and presenting a design based on a comprehensive lighting retrofit and PV generation, whereas other studies are mostly based on envelope refurbishment and behaviour changes.


Author(s):  
Mohammed Reyasudin Basir Khan ◽  
Jagadeesh Pasupuleti ◽  
Jabbar Al-Fattah ◽  
Mehrdad Tahmasebi

<span lang="EN-US">This paper discusses on the implementation of a grid-connected PV system for university campus in Malaysia. The primary goal of this study is to develop a grid-connected microgrid comprises of Photovoltaic (PV) and a battery storage system to meet the campus load demand and minimize grid dependency. The microgrid modeled and simulated in Hybrid Optimization Model for Electrical Renewable (HOMER) software. Actual load profile and renewable resources were used as an input parameter for the hybrid system. The campus selected is Universiti Kuala Lumpur, British Malaysian Institute as it represents typical load profile for a small campus. Therefore, the results can be used to represent hybrid system development for other small campuses in Malaysia as well. Firstly, optimal sizing of renewable energy (RE) were simulated with respect to total Net Present Cost (NPC) and Cost of Energy (COE). Then, sensitivity analysis conducted to determine the system performance based on changes of load growth, and renewable resources. The results demonstrate optimal HRES combinations for the campus microgrid comprises of 50 kWp of PV generations with 50 kW inverter. However, inclusion of 576 kWh battery storage system will increase the NPC but has higher RE penetration.</span>


2021 ◽  
Vol 16 ◽  
pp. 220-230
Author(s):  
Younis Badran ◽  
Ishaq Sider

In the recent years, solar cooling technologies for buildings have garnered increased attention. This study aimed to evaluate the performance of current solar thermal and solar photovoltaic (PV) air-conditioning technologies. Hence, the annual heating/cooling load profile and energy consumption of a reference building in the climate of Aqaba, Jordan were simulated using the TRNSYS software. The solar thermal and solar PV air-conditioning systems were designed and simulated to compensate the cooling demands. It was found that the annual cooling energy accounted for 96.3 % of the total annual energy demand (heating plus cooling) of the reference building. The solar PV and solar thermal air-conditioning systems compensated for direct cooling by 35.8 % and 30.9 %, respectively, and the corresponding compensations of cooling energy by the storage system were 7.3 % and 11.9 %, respectively. Thus, through this comparative study, we found that the storage system significantly contributed in compensating the cooling demands of the solar thermal system; however, the compensation to direct cooling was lower relative to the solar PV system


Sign in / Sign up

Export Citation Format

Share Document