scholarly journals Dual Battery Storage System: An Optimized Strategy for the Utilization of Renewable Photovoltaic Energy in the United Kingdom

Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 177 ◽  
Author(s):  
Sarvar Nengroo ◽  
Muhammad Kamran ◽  
Muhammad Ali ◽  
Do-Hyun Kim ◽  
Min-Soo Kim ◽  
...  

The increasing world human population has given rise to the current energy crisis and impending global warming. To meet the international environmental obligations, alternative technological advances have been made to harvest clean and renewable energy. The solar photovoltaics (PV) system is a relatively new concept of clean technology that can be employed as an autonomous power source for a range of off-grid applications. In this study, the dual battery storage system is coupled with a solar PV system and a low voltage grid, benefitting from the feed-in tariff (FIT) policy. The main outcomes of this study are: (I) A novel dual battery storage system for the optimal use of the PV system/energy is proposed; (II) The problem is formulated in the form of a mathematical model, and a cost function is devised for effective cost calculation; (III) An optimal cost analysis is presented for the effective use of PV energy; (IV) real-time data of a solar PV taken from the owner and the demand profile collected from the user is applied to the proposed approach, with United Kingdom (UK) tariff incentives. This system works in a loop by charging one system from the solar PV for one day, and discharging the other system. This model gives certainty that power is exported to the grid when the solar PV generates an excess amount; batteries are utilized during the peak hours, and power is purchased when the demand is not met by the batteries, or when the demand is higher than the generation. This study examined the economic knowledge of solar PV and battery storage systems by considering the FIT incentives.

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2727 ◽  
Author(s):  
Sofiane Kichou ◽  
Nikolaos Skandalos ◽  
Petr Wolf

This paper reports on the electrical performance of two bloc-of-flats buildings located in Prague, Czech Republic. Measured data of electrical consumption were used to investigate the effect of photovoltaic (PV) and battery energy storage system (BESS) systems on the overlap between generation and demand. Different PV array configurations and battery storage capacities were considered. Detailed solar analysis was carried out to analyze the solar potential of the building and to assess the PV electricity production. The evaluation of the building performance was done through MATLAB simulations based on one-year monitored data. The simulation results were used for the calculation of the load matching indices: namely, the self-consumption and self-sufficiency. It was found that optimized array tilt and orientation angles can effectively contribute to a better adjustment between electricity demand and solar PV generation. The addition of a façade PV system increases significantly the PV generation and thus the load matching during winter months. Mismatch is further reduced by using the energy flexibility provided by the BESS. Depending on the PV size and BESS capacity, the self-consumption and the self-sufficiency of the building could increase from 55% to 100% and from 24% up to 68%, respectively.


Implementation of modified AHP coupled with MOORA methods for modeling and optimization of solar photovoltaic (PV)-pumped hydro energy storage (PHS) system parameter is presented in this chapter. Work optimized the parameters, namely unmet energy (UE), size of PV-panel, and volume of upper reservoir (UR), to get economic cost of energy (COE) and excess energy (EE). The trail no.11 produces the highest assessment values compared to the other trails and provides EE as 16.19% and COE as 0.59 $/kWh for PV-PHS. ANOVA and parametric study is also performed to determine the significance of the parameters for PV-PHS performance. Investigation results indicate the effectiveness and significant potential for modeling and optimization of PV-PHS system and other solar energy systems.


Author(s):  
Mohammed Reyasudin Basir Khan ◽  
Jagadeesh Pasupuleti ◽  
Jabbar Al-Fattah ◽  
Mehrdad Tahmasebi

<span lang="EN-US">This paper discusses on the implementation of a grid-connected PV system for university campus in Malaysia. The primary goal of this study is to develop a grid-connected microgrid comprises of Photovoltaic (PV) and a battery storage system to meet the campus load demand and minimize grid dependency. The microgrid modeled and simulated in Hybrid Optimization Model for Electrical Renewable (HOMER) software. Actual load profile and renewable resources were used as an input parameter for the hybrid system. The campus selected is Universiti Kuala Lumpur, British Malaysian Institute as it represents typical load profile for a small campus. Therefore, the results can be used to represent hybrid system development for other small campuses in Malaysia as well. Firstly, optimal sizing of renewable energy (RE) were simulated with respect to total Net Present Cost (NPC) and Cost of Energy (COE). Then, sensitivity analysis conducted to determine the system performance based on changes of load growth, and renewable resources. The results demonstrate optimal HRES combinations for the campus microgrid comprises of 50 kWp of PV generations with 50 kW inverter. However, inclusion of 576 kWh battery storage system will increase the NPC but has higher RE penetration.</span>


2021 ◽  
Vol 16 ◽  
pp. 220-230
Author(s):  
Younis Badran ◽  
Ishaq Sider

In the recent years, solar cooling technologies for buildings have garnered increased attention. This study aimed to evaluate the performance of current solar thermal and solar photovoltaic (PV) air-conditioning technologies. Hence, the annual heating/cooling load profile and energy consumption of a reference building in the climate of Aqaba, Jordan were simulated using the TRNSYS software. The solar thermal and solar PV air-conditioning systems were designed and simulated to compensate the cooling demands. It was found that the annual cooling energy accounted for 96.3 % of the total annual energy demand (heating plus cooling) of the reference building. The solar PV and solar thermal air-conditioning systems compensated for direct cooling by 35.8 % and 30.9 %, respectively, and the corresponding compensations of cooling energy by the storage system were 7.3 % and 11.9 %, respectively. Thus, through this comparative study, we found that the storage system significantly contributed in compensating the cooling demands of the solar thermal system; however, the compensation to direct cooling was lower relative to the solar PV system


2021 ◽  
Vol 13 (24) ◽  
pp. 13882
Author(s):  
Mageswaran Rengasamy ◽  
Sivasankar Gangatharan ◽  
Rajvikram Madurai Elavarasan ◽  
Lucian Mihet-Popa

The increase in energy-efficient DC appliances and electronic gadgets has led to an upheaval in the usage of AC–DC power convertors; hence, power loss in converter devices is cumulatively increasing. Evolving microgrid technology has also become deeply integrated with the conversion process due to increased power converters in its infrastructure, significantly worsening the power loss situation. One of the practical solutions to this disturbance is to reduce conversion losses in domestic distribution systems through the optimal deployment of the battery storage system and solar PV power using microgrid technology. In this paper, a novel energy management system is developed that uses a new control algorithm, termed Inefficient Power Conversion Elimination Algorithm (IPCEA). The proposed algorithm compares the Net Transferable Power (NTP) available on the DC side with the loss rate across the converter. The converter is switched off (or disconnected from the grid and load) if the NTP is less than 20% of the converter rating to avoid low-efficiency power conversion. The solar PV system is connected to the DC bus to supply the DC loads while the AC loads are supplied from the AC source (utility power). An auxiliary battery pack is integrated to the DC side to feed DC loads during the absence of solar energy. A battery energy storage system (BESS) is deployed to manage energy distribution effectively. The power distribution is managed using a centralized microgrid controller, and the load demand is met accordingly. Thereby, the power generated by the solar PV can be utilized effectively. Microgrid technology’s effectiveness is emphasized by comparative analysis, and the achievements are discussed in detail and highlighted using a prototype model.


2020 ◽  
Vol 10 (3) ◽  
pp. 1108 ◽  
Author(s):  
G. V. Brahmendra Kumar ◽  
Palanisamy Kaliannan ◽  
Sanjeevikumar Padmanaban ◽  
Jens Bo Holm-Nielsen ◽  
Frede Blaabjerg

This paper proposes an effective management system for stand-alone solar photovoltaic (PV) using real-time data with Hybrid Energy Storage System (HESS). The abrupt movement of fleeting clouds often gives rise to PV power output fluctuations which in turn affect the power quality and system stability due to scattered solar radiation reception. These variations can limit through a ramp-limit controller and employing a DC link controller to maintain the stable DC link voltage. The battery is used in the system for continuous power application and the sudden variations in charging and discharging of battery power can create stress on the battery. These sudden changes in a battery will be removed by the super-capacitor (SC) unit and achieves a fast DC link voltage regulation. Hence, the high energy and power density devices such as battery and SC units will deliver more stable power into the system. The control scheme is tested in Matlab/Simulink and validated by Real-Time Hardware-in-Loop (HIL) simulator using periodic one-minute data for one year from the solar PV power plant from real-time.


Author(s):  
Jordan Thompson ◽  
Moncef Krarti

Abstract In this report, a resiliency analysis is carried out to assess the energy, economic, and power outage survivability benefits of efficient and Net-Zero communities. The analysis addresses the appropriate steps to designing an energy-efficient and Net-Zero community using Phoenix, Arizona as a primary location for weather and utility inputs. A baseline home is established using International Energy Conservation Code (IECC) 2018 code requirements. Three occupancy levels are evaluated in BEopt to provide diversity in the community’s building stock. The loads from the baseline, energy-efficient optimum, and Net-Zero optimum single-family homes are utilized to determine energy use profiles for various residential community types using occupancy statistics for Phoenix. Then, REopt is used to determine the photovoltaic (PV) and battery storage system sizes necessary for the community to survive a 72-hour power outage. The baseline community requires a 544-kW PV system and 375-kW/1,564 kWh battery storage system to keep all electrical loads online during a 72-hour power outage. The energy-efficient community requires a 291-kW PV system and a 202-kW/820 kWh battery storage system while the Net-Zero community requires a 291-kW PV system and a 191-kW/880 kWh battery storage system. In this study, the economic analysis indicates that it is 43% more cost-effective to install a shared PV plus storage system than to install individual PV plus storage systems in an energy-efficient community. After analyzing the system sizes and costs required to survive various outage durations, it is found that only a 4% difference in net present cost exists between a system sized for a 24-hour outage and a 144-hour outage. In the event of a pandemic or an event that causes a community-wide lockdown, the energy-efficient community would only survive 6 hours out of a 72-hour power outage during a time where plug loads are increased by 50% due to added laptops, monitors, and other office electronics. Finally, a climate sensitivity analysis is conducted for efficient communities in Naperville, Illinois and Augusta, Maine. The analysis suggests that for a 72-hour power outage starting on the peak demand day and time of the year, the cost of resiliency is higher in climates with more heating and cooling needs as HVAC is consistently the largest load in a residential building.


Sign in / Sign up

Export Citation Format

Share Document