scholarly journals Wideband DOA Estimation on Co-prime Array via Atomic Norm Minimization

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3235 ◽  
Author(s):  
Hyeonjin Chung ◽  
Young Mi Park ◽  
Sunwoo Kim

This paper introduces a low complexity wideband direction-of-arrival (DOA) estimation algorithm on the co-prime array. To increase the number of the detectable signal sources and to prevent an unnecessary increase in complexity, the low dimensional co-prime array vector is constructed by arranging elements of the correlation matrix at every frequency bin. The atomic norm minimization (ANM)-based approach resolves the grid-mismatch, which causes an inevitable error in the compressive sensing (CS)-based DOA estimation. However, the complexity surges when the ANM is exploited to the wideband DOA estimation on the co-prime array. The surging complexity of the ANM-based wideband DOA estimation on the co-prime array is handled by solving the time-saving semidefinite programming (SDP) motivated by the ANM for multiple measurement vector (MMV) case. Simulation results show that the proposed algorithm has high accuracy and low complexity compared to compressive sensing (CS)-based wideband DOA estimation algorithms that exploit the co-prime array.

2015 ◽  
Vol 713-715 ◽  
pp. 1239-1243
Author(s):  
Ying Zhang ◽  
Guang Yao Xin ◽  
Xiao Fei Zhang

This paper discusses that the application of compressive sensing in direction of arrival (DOA) estimation. Traditional DOA estimation algorithms, such as MUSIC, ESPRIT, have shortcomings of high demand of initialization and sufficient number of snapshots and high sensitivity to signal-to-noise ratio (SNR). The proposed DOA estimation algorithm via OMP method based on compressed sensing (CS) can solve the above-mentioned problem and has good estimation performance. Computer simulations verify the effectiveness of the OMP algorithm.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3609
Author(s):  
Hyeonjin Chung ◽  
Young Mi Park ◽  
Sunwoo Kim

A super-resolution direction-of-arrival (DoA) estimation algorithm that employs a co-prime array and positive atomic norm minimization (ANM) is proposed. To exploit larger array cardinality, the co-prime array vector is constructed by arranging elements of a correlation matrix. The positive ANM is a technique that can enhance resolution when the coefficients of the atoms are the positive real numbers. A novel optimization problem is proposed to ensure the coefficients of the atoms are the positive real numbers, and the positive ANM is employed after solving the optimization problem. The simulation results show that the proposed algorithm achieves high resolution and has lower complexity than the other ANM-based super-resolution DoA estimation algorithm.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Hongtao Li ◽  
Chaoyu Wang ◽  
Xiaohua Zhu

A novel compressive sensing- (CS-) based direction-of-arrival (DOA) estimation algorithm is proposed to solve the performance degradation of the CS-based DOA estimation in the presence of sensing matrix mismatching. Firstly, a DOA sparse sensing model is set up in the presence of sensing matrix mismatching. Secondly, combining the Dantzig selector (DS) algorithm and least-absolute shrinkage and selection operator (LASSO) algorithm, a CS-based DOA estimation algorithm which performs iterative optimization alternatively on target angle information vector and sensing matrix mismatching error vector is proposed. The simulation result indicates that the proposed algorithm possesses higher angle resolution and estimation accuracy compared with conventional CS-based DOA estimation algorithms.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 641
Author(s):  
Kuan-Ting Chen ◽  
Wei-Hsuan Ma ◽  
Yin-Tsung Hwang ◽  
Kuan-Ying Chang

Direction of Arrival (DoA) estimation is essential to adaptive beamforming widely used in many radar and wireless communication systems. Although many estimation algorithms have been investigated, most of them focus on the performance enhancement aspect but overlook the computing complexity or the hardware implementation issues. In this paper, a low-complexity yet effective DoA estimation algorithm and the corresponding hardware accelerator chip design are presented. The proposed algorithm features a combination of signal sub-space projection and parallel matching pursuit techniques, i.e., applying signal projection first before performing matching pursuit from a codebook. This measure helps minimize the interference from noise sub-space and makes the matching process free of extra orthogonalization computations. The computing complexity can thus be reduced significantly. In addition, estimations of all signal sources can be performed in parallel without going through a successive update process. To facilitate an efficient hardware implementation, the computing scheme of the estimation algorithm is also optimized. The most critical part of the algorithm, i.e., calculating the projection matrix, is largely simplified and neatly accomplished by using QR decomposition. In addition, the proposed scheme supports parallel matches of all signal sources from a beamforming codebook to improve the processing throughput. The algorithm complexity analysis shows that the proposed scheme outperforms other well-known estimation algorithms significantly under various system configurations. The performance simulation results further reveal that, subject to a beamforming codebook with a 5° angular resolution, the Root Mean Square (RMS) error of angle estimations is only 0.76° when Signal to Noise Ratio (SNR) = 20 dB. The estimation accuracy outpaces other matching pursuit based approaches and is close to that of the classic Estimation of Signal Parameters Via Rotational Invariance Techniques (ESPRIT) scheme but requires only one fifth of its computing complexity. In developing the hardware accelerator design, pipelined Coordinate Rotation Digital Computer (CORDIC) processors consisting of simple adders and shifters are employed to implement the basic trigonometric operations needed in QR decomposition. A systolic array architecture is developed as the computing kernel for QR decomposition. Other computing modules are also realized using various linear systolic arrays and chained together seamlessly to maximize the computing throughput. A Taiwan Semiconductor Manufacturing Company (TSMC) 40 nm CMOS process was chosen as the implementation technology. The gate count of the chip design is 454.4k, featuring a core size of 0.76 mm 2 , and can operate up to 333 MHz. This suggests that one DoA estimation, with up to three signal sources, can be performed every 2.38 μs.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Ming-Ming Liu ◽  
Chun-Xi Dong ◽  
Yang-Yang Dong ◽  
Guo-Qing Zhao

This paper proposes a superresolution two-dimensional (2D) direction of arrival (DOA) estimation algorithm for a rectangular array based on the optimization of the atomic l0 norm and a series of relaxation formulations. The atomic l0 norm of the array response describes the minimum number of sources, which is derived from the atomic norm minimization (ANM) problem. However, the resolution is restricted and high computational complexity is incurred by using ANM for 2D angle estimation. Although an improved algorithm named decoupled atomic norm minimization (DAM) has a reduced computational burden, the resolution is still relatively low in terms of angle estimation. To overcome these limitations, we propose the direct minimization of the atomic l0 norm, which is demonstrated to be equivalent to a decoupled rank optimization problem in the positive semidefinite (PSD) form. Our goal is to solve this rank minimization problem and recover two decoupled Toeplitz matrices in which the azimuth-elevation angles of interest are encoded. Since rank minimization is an NP-hard problem, a novel sparse surrogate function is further proposed to effectively approximate the two decoupled rank functions. Then, the new optimization problem obtained through the above relaxation can be implemented via the majorization-minimization (MM) method. The proposed algorithm offers greatly improved resolution while maintaining the same computational complexity as the DAM algorithm. Moreover, it is possible to use a single snapshot for angle estimation without prior information on the number of sources, and the algorithm is robust to noise due to its iterative nature. In addition, the proposed surrogate function can achieve local convergence faster than existing functions.


Electronics ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 26 ◽  
Author(s):  
Shufeng Li ◽  
Hongda Wu ◽  
Libiao Jin

The conventional direction of arrival (DOA) estimation algorithm is not effective with the tremendous complexity due to the large-scale array antennas in a massive multiple-input multiple-output (MIMO) system. A new frame structure for downlink transmission is presented. Then, codebook-aided (C-aided) algorithms are proposed based on this frame structure that can fully exploit the priori information under channel codebook feedback mechanism. An oriented angle range is scoped through the codebook feedback, which is drastically beneficial to reduce computational burden for DOA estimation in massive MIMO systemss. Compared with traditional DOA estimation algorithms, our proposed C-aided algorithms are computationally efficient and meet the demand of future green communication. Simulations show the estimation effectiveness of C-aided algorithms and advantage for decrement of computational cost.


Sign in / Sign up

Export Citation Format

Share Document