scholarly journals Sustainable E-Bike Charging Station That Enables AC, DC and Wireless Charging from Solar Energy

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3549 ◽  
Author(s):  
Gautham Ram Chandra Mouli ◽  
Peter Van Duijsen ◽  
Francesca Grazian ◽  
Ajay Jamodkar ◽  
Pavol Bauer ◽  
...  

If electric vehicles have to be truly sustainable, it is essential to charge them from sustainable sources of electricity, such as solar or wind energy. In this paper, the design of solar powered e-bike charging station that provides AC, DC and wireless charging of e-bikes is investigated. The charging station has integrated battery storage that enables for both grid-connected and off-grid operation. The DC charging uses the DC power from the photovoltaic panels directly for charging the e-bike battery without the use of an AC charging adapter. For the wireless charging, the e-bike can be charged through inductive power transfer via the bike kickstand (receiver) and a specially designed tile (transmitter) at the charging station, which provides maximum convenience to the user.

Author(s):  
Sagar B C

While electric vehicles are generally seen as clean vehicles, they are not completely clean because the production of electricity might generate emissions as well. This paper on a solar powered electric vehicle charging station is a working solution to close the gap in achieving a truly renewable and clean vehicle. The currently scenario of today solar energy ecosystem is that, it is highly unstructured and localized. There are about 50 solar power plants in India but none of them are connect in a manner that there would be a method to perform analytical analysis of the solar energy produced. This paper aims to finding a possible method to connect the solar powered electric vehicle charging station and to perform analytical operations to increase efficiency of Solar Energy.


Author(s):  
Bugatha Ram Vara Prasad ◽  
T. Deepthi ◽  
N. Satyavathi ◽  
V. Satish Varma ◽  
R. Hema Kumar

This paper describes design of solar powered charging station for charging of electric vehicle that solves the key downside of fuel and pollution. While EV charging has traditionally been grid-based, use of solar powered chargers has emerged as an interesting opportunity. As worlds resources are diminishing, government agencies and non-government organization are pushing greener solution through the use of renewable energy sources. In order to reduce the pollution through the motor vehicles, there is a large scope of increase in electric vehicles all over the world. To run the electric vehicle the fuel required is the electricity which can be storable through the use of solar energy. Electric vehicles that run on the Electric vehicle smart charging station which is the promising alternative and environmentally sustainable solution to meet up the energy crisis. This paper investigates the possibility of charging the battery of electric vehicles at a various working place like offices, colleges, hospitals, universities etc in India using solar energy. In this paper, the charging station successfully developed as desired features for electric vehicle from renewable energy resources with solar panel, solar charge controller, batteries storage and DC-DC converter. A laboratory-scale experimental prototype was also developed, and the performance of the proposed charging station was investigated.


Author(s):  
Thanat Jensanyayut ◽  
Tipthacha Phongtrakul ◽  
Kulsomsap Yenchamchalit ◽  
Yuttana Kongjeen ◽  
Krischonme Bhumkittipich ◽  
...  

2014 ◽  
Vol 1030-1032 ◽  
pp. 2130-2134
Author(s):  
Xue Bo Yan

With the development and extension of electric vehicle in our country, research on electric vehicle technology becomes a hot topic in recent years. This paper starts with the technical barriers from electric vehicle endurance ability and described the improving methods of electric automobile thoroughly, pointed out the existing problems in the process of application about the methods in this paper. Then put forward the application of solar energy, wind energy technology in electric cars, proposed a research direction for the development of electric vehicle. At last, the paper proposed a research direction for the development of electric vehicle.


Our world is running out of fossil fuel so people start to change themselves and started to use an electric vehicle. In electric vehicles the charging is a big deal, this project includes solar and wind energy charging mechanism to generate power for electric vehicle both day and night. And it contains Raspberry pi that is programmed to calculate the amount of power charged for an electric vehicle, then the user can know that the information via Blynk application. The power generated by solar panel setup is given to the battery via DC-DC converter because the power from solar panel setup is a variable DC, so that is converted into pure DC. And the power generated by wind generator setup is given to battery via AC – DC converter, the power from a wind generator is AC, so that is converted into DC.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8517
Author(s):  
Samuel M. Muhindo ◽  
Roland P. Malhamé ◽  
Geza Joos

We develop a strategy, with concepts from Mean Field Games (MFG), to coordinate the charging of a large population of battery electric vehicles (BEVs) in a parking lot powered by solar energy and managed by an aggregator. A yearly parking fee is charged for each BEV irrespective of the amount of energy extracted. The goal is to share the energy available so as to minimize the standard deviation (STD) of the state of charge (SOC) of batteries when the BEVs are leaving the parking lot, while maintaining some fairness and decentralization criteria. The MFG charging laws correspond to the Nash equilibrium induced by quadratic cost functions based on an inverse Nash equilibrium concept and designed to favor the batteries with the lower SOCs upon arrival. While the MFG charging laws are strictly decentralized, they guarantee that a mean of instantaneous charging powers to the BEVs follows a trajectory based on the solar energy forecast for the day. That day ahead forecast is broadcasted to the BEVs which then gauge the necessary SOC upon leaving their home. We illustrate the advantages of the MFG strategy for the case of a typical sunny day and a typical cloudy day when compared to more straightforward strategies: first come first full/serve and equal sharing. The behavior of the charging strategies is contrasted under conditions of random arrivals and random departures of the BEVs in the parking lot.


Sign in / Sign up

Export Citation Format

Share Document