scholarly journals Optimal Calibration Strategy of a Hybrid Electric Vehicle Equipped with an Ultra-Lean Pre-Chamber SI Engine for the Minimization of CO2 and Pollutant Emissions

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 4008
Author(s):  
Fabio Bozza ◽  
Vincenzo De Bellis ◽  
Enrica Malfi ◽  
Luigi Teodosio ◽  
Daniela Tufano

The complexity of modern hybrid powertrains poses new challenges for the optimal control concerning, on one hand, the thermal engine to maximize its efficiency, and, on the other hand, the vehicle to minimize the noxious emissions and CO2. In this context, the engine calibration has to be conducted by considering simultaneously the powertrain management, the vehicle characteristics, and the driving mission. In this work, a calibration methodology for a two-stage boosted ultra-lean pre-chamber spark ignition (SI) engine is proposed, aiming at minimizing its CO2 and pollutant emissions. The engine features a flexible variable valve timing (VVT) control of the valves and an E-compressor, coupled in series to a turbocharger, to guarantee an adequate boost level needed for ultra-lean operation. The engine is simulated in a refined 1D model. A simplified methodology, based on a network of proportional integral derivative (PID) controllers, is presented for the calibration over the whole operating domain. Two calibration variants are proposed and compared, characterized by different fuel and electric consumptions: the first one aims to exclusively maximize the brake thermal efficiency, and the second one additionally considers the electric energy absorbed by the E-compressor and drained from the battery. After a verification against the outcomes of an automatic optimizer, the calibration strategies are assessed based on pollutant and CO2 emissions along representative driving cycles by vehicle simulations. The results highlight slightly lower CO2 emissions with the calibration approach that minimizes the E-compressor consumption, thus revealing the importance of considering the engine calibration phase, the powertrain management, the vehicle characteristics, and its mission.

2017 ◽  
Vol 170 (3) ◽  
pp. 66-72
Author(s):  
Jerzy MERKISZ ◽  
Łukasz RYMANIAK

The article discusses the possibility of determining the environmental indicators for vehicles of different categories in relation to CO2 emissions. These are called toxicity indicators because they concern the compounds: CO, THC and NOx. Three Euro V compliant vehicles with different propulsion systems types were used for the study: a 0.9 dm3 urban passenger car with a SI engine and a start-stop system, a 2.5 dm3 off-road vehicle with a CI engine, and a city bus with a hybrid drive system in series configuration and a CI engine with a displacement of 6.7 dm3. Measurements were made in actual operating conditions in the Poznan agglomeration using a portable emissions measurement system (PEMS). The paper presents the characteristics of the operating time shares of vehicles and propulsion systems as well as CO2 emissions depending on the engine load and crankshaft rotational speed for individual vehicles. The determined toxicity indicators allowed to indicate their usefulness, to make comparisons between tested vehicles, and to identify directions for further work on the application and interpretation of these indicators.


Energies ◽  
2017 ◽  
Vol 10 (10) ◽  
pp. 1590 ◽  
Author(s):  
Claudio Cubito ◽  
Federico Millo ◽  
Giulio Boccardo ◽  
Giuseppe Di Pierro ◽  
Biagio Ciuffo ◽  
...  

2021 ◽  
pp. 146808742110481
Author(s):  
Vicente Bermúdez ◽  
Santiago Ruiz ◽  
Brayan Conde ◽  
Lian Soto

This research/article aimed to analyze the influence of an after-treatment system (ATS) on emissions of a heavy-duty spark-ignition (HD-SI) engine fueled with liquified petroleum gas (LPG), in the context of current Euro VI emissions requirements. The ATS is composed by a three-way catalyst (TWC) in series with a diesel particle filter (DPF). Emissions testing were carried out on an engine test bench according to homologation procedures, performing both world harmonized stationary cycle (WHSC) and world harmonized transient cycle (WHTC), to study the effects of the engine operating parameters on pollutant emissions behavior and ATS performance during steady and dynamic states, respectively. Instruments used were a gas analyzer Horiba MEXA ONE to measure gaseous emissions, HORIBA OBS ONE PN to measure particle matter (PM) concentration, and spectrometer TSI EEPS 3090 to measure PM concentration and particle size distribution (PSD). The results showed some important aspects such as the effects of engine speed and load on pollutant emissions formation and ATS performance, the influence of the three-way catalyst (TWC) on particulate matter (PM) reduction due to the relationship between volatile unburned hydrocarbons (UHC) and the emergence of nucleation-mode particles, stressing that ATS implementation is mandatory to meet the current emissions requirements.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1400
Author(s):  
Karol Tucki

A driving cycle is a record intended to reflect the regular use of a given type of vehicle, presented as a speed profile recorded over a certain period of time. It is used for the assessment of engine pollutant emissions, fuel consumption analysis and environmental certification procedures. Different driving cycles are used, depending on the region of the world. In addition, drive cycles are used by car manufacturers to optimize vehicle drivelines. The basis of the work presented in the manuscript was a developed computer tool using tests on the Toyota Camry LE 2018 chassis dynamometer, the results of the optimization process of neural network structures and the properties of fuels and biofuels. As a result of the work of the computer tool, the consumption of petrol 95, ethanol, methanol, DME, CNG, LPG and CO2 emissions for the vehicle in question were analyzed in the following driving tests: Environmental Protection Agency (EPA US06 and EPA USSC03); Supplemental Federal Test Procedure (SFTP); Highway Fuel Economy Driving Schedule (HWFET); Federal Test Procedure (FTP-75–EPA); New European Driving Cycle (NEDC); Random Cycle Low (×05); Random Cycle High (×95); Mobile Air Conditioning Test Procedure (MAC TP); Common Artemis Driving Cycles (CADC–Artemis); Worldwide Harmonized Light-Duty Vehicle Test Procedure (WLTP).


2021 ◽  
Vol 13 (8) ◽  
pp. 4180
Author(s):  
Andrzej Czerepicki ◽  
Tomasz Krukowicz ◽  
Anna Górka ◽  
Jarosław Szustek

The article presents an analysis of priority solutions for trams at a selected sequence of intersections in Warsaw (Poland). An analysis of the literature has shown the topicality of this issue. A computer simulation model of a coordinated sequence of intersections was constructed. Three test scenarios were designed: the existing control system, the new coordinated fixed-time control system, and the adaptive control system with active priority. In the simulation process, detailed travel characteristics of trams and other traffic participants in a selected section were obtained for the three varying scenarios. Electric energy consumption for traction needs and pollutant emissions was then estimated for each of the variants. It was concluded that for the analyzed configuration, implementation of the adaptive priority will result in a reduction of tram time losses by up to 25%, a reduction in energy consumption by up to 23%, and a reduction in the emission of pollutants from individual vehicles by up to 3% in relation to the original variant. The conducted research may be the basis for a comprehensive method of assessing the effectiveness of applying the adaptative priority when designing new tramway lines and modernizing the existing ones.


2014 ◽  
Vol 663 ◽  
pp. 336-341 ◽  
Author(s):  
Mohd Farid Muhamad Said ◽  
Zulkarnain Abdul Latiff ◽  
Aminuddin Saat ◽  
Mazlan Said ◽  
Shaiful Fadzil Zainal Abidin

In this paper, engine simulation tool is used to investigate the effect of variable intake manifold and variable valve timing technologies on the engine performance at full load engine conditions. Here, an engine model of 1.6 litre four cylinders, four stroke spark ignition (SI) engine is constructed using GT-Power software to represent the real engine conditions. This constructed model is then correlated to the experimental data to make sure the accuracy of this model. The comparison results of volumetric efficiency (VE), intake manifold air pressure (MAP), exhaust manifold back pressure (BckPress) and brake specific fuel consumption (BSFC) show very well agreement with the differences of less than 4%. Then this correlated model is used to predict the engine performance at various intake runner lengths (IRL) and various intake valve open (IVO) timings. Design of experiment and optimisation tool are applied to obtain optimum parameters. Here, several configurations of IRL and IVO timing are proposed to give several options during the engine development work. A significant improvement is found at configuration of variable IVO timing and variable IRL compared to fixed IVO timing and fixed IRL.


2019 ◽  
Vol 45 ◽  
pp. 619-627 ◽  
Author(s):  
Triluck Koossalapeerom ◽  
Thaned Satiennam ◽  
Wichuda Satiennam ◽  
Watis Leelapatra ◽  
Atthapol Seedam ◽  
...  

Author(s):  
Xinyou Lin ◽  
Qigao Feng ◽  
Liping Mo ◽  
Hailin Li

This study presents an adaptive energy management control strategy developed by optimally adjusting the equivalent factor (EF) in real-time based on driving pattern recognition (DPR), to guarantee the plug-in hybrid electric vehicle (PHEV) can adapt to various driving cycles and different expected trip distances and to further improve the fuel economy performance. First, the optimization model for the EF with the battery state of charge (SOC) and trip distance were developed based on the equivalent consumption minimization strategy (ECMS). Furthermore, a methodology of extracting the globally optimal EF model from genetic algorithm (GA) solution is proposed for the design of the EF adaptation strategy. The EF as the function of trip distances and SOC in various driving cycles is expressed in the form of map that can be applied directly in the corresponding driving cycle. Finally, the algorithm of DPR based on learning vector quantization (LVQ) is established to identify the driving mode and update the optimal EF. Simulation and hardware-in-loop experiments are conducted on synthesis driving cycles to validate the proposed strategy. The results indicate that the optimal adaption EF control strategy will be able to adapt to different expected trip distances and improve the fuel economy performance by up to 13.8% compared to the ECMS with constant EF.


Sign in / Sign up

Export Citation Format

Share Document