scholarly journals A Computer Tool for Modelling CO2 Emissions in Driving Cycles for Spark Ignition Engines Powered by Biofuels

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1400
Author(s):  
Karol Tucki

A driving cycle is a record intended to reflect the regular use of a given type of vehicle, presented as a speed profile recorded over a certain period of time. It is used for the assessment of engine pollutant emissions, fuel consumption analysis and environmental certification procedures. Different driving cycles are used, depending on the region of the world. In addition, drive cycles are used by car manufacturers to optimize vehicle drivelines. The basis of the work presented in the manuscript was a developed computer tool using tests on the Toyota Camry LE 2018 chassis dynamometer, the results of the optimization process of neural network structures and the properties of fuels and biofuels. As a result of the work of the computer tool, the consumption of petrol 95, ethanol, methanol, DME, CNG, LPG and CO2 emissions for the vehicle in question were analyzed in the following driving tests: Environmental Protection Agency (EPA US06 and EPA USSC03); Supplemental Federal Test Procedure (SFTP); Highway Fuel Economy Driving Schedule (HWFET); Federal Test Procedure (FTP-75–EPA); New European Driving Cycle (NEDC); Random Cycle Low (×05); Random Cycle High (×95); Mobile Air Conditioning Test Procedure (MAC TP); Common Artemis Driving Cycles (CADC–Artemis); Worldwide Harmonized Light-Duty Vehicle Test Procedure (WLTP).


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 266
Author(s):  
Karol Tucki

The dynamic development of transport in recent decades reflects the level of economic development in the world. The transport sector today is one of the main barriers to the achievement of the European Union’s climate protection objectives. More and more restrictive legal regulations define permissible emission limits for the amounts of toxic substances emitted into the atmosphere. Numerical CO2 modeling tools are one way to replace costly on-road testing. Driving cycles, which are an approximation of the vehicle’s on-road operating conditions, are the basis of any vehicle approval procedure. The paper presents a computer tool that uses neural networks to simulate driving tests. Data obtained from tests on the Mercedes E350 chassis dynamometer were used for the construction of the neural model. All the collected operational parameters of the vehicle, which are the input data for the built model, were used to create simulation control runs for driving tests: Environmental Protection Agency, Supplemental Federal Test Procedure, Highway Fuel Economy Driving Schedule, Federal Test Procedure, New European Driving Cycle, Random Cycle Low, Random Cycle High, Mobile Air Conditioning Test Procedure, Common Artemis Driving Cycles, Worldwide Harmonized Light-Duty Vehicle Test Procedure. Using the developed computer simulation tool, the impact on CO2 emissions was analyzed in the context of driving tests of four types of fuels: Diesel, Fatty Acid Methyl Esters, rapeseed oil, butanol (butyl alcohol). As a result of the processing of this same computer tool, mass consumption of fuels and CO2 emissions were analyzed in driving tests for the given analyzed vehicle.



2021 ◽  
Vol 1 (50) ◽  
pp. 67-80
Author(s):  
JAWORSKI A ◽  
◽  
JAREMCIO M ◽  
LEJDA K ◽  
MĄDZIEL M ◽  
...  

The manufacturing process for new passenger vehicles is based not only on their design and manufacture, but also on validation and testing, especially in the area of exhaust emissions. The car manufacturer is obliged to approve the type of each new model in accordance with the regulations. The regulation associated with the relevant directive includes a number of requirements, including the emissions of pollutants in the exhaust gas, which are imposed on newly manufactured vehicles. Along with the development of the automotive industry, more and more attention has been paid to the pollution that forms in the internal combustion engines of vehicles. The European Union has introduced standards known as “EURO” to define emission limits for the main pollutants in exhaust gases. The tests are carried out for all passenger cars in the same way: on a dynamometer, in a climatic chamber (with the possibility of temperature adjustment) and in accordance with a certain driving cycle. Road tests are designed to check fuel consumption and exhaust emissions. In September 2017, a new procedure was introduced called the World Harmonized Light Vehicle Test Procedure (WLTP), which includes several driving cycles called WLTC. The introduction of the new test was driven by the very dynamic development in the automotive industry of hybrid and electric vehicles. The previous NEDC test did not take into account several important parameters such as motor power or drive type. Due to the different specifics of road traffic in the United States, their own road tests were developed, in contrast to European ones. Tests are conducted in accordance with FTP-75 (Federal Testing Procedure). The test parameters take into account driving stability and engine operating conditions, on which the values of pollutant emissions in the exhaust gases depend. Due to the difference in laboratory driving cycles, according to traffic conditions, the values of pollutant emissions in the exhaust gases during road tests differ from those provided by the manufacturers. The article compares the characteristic test parameters according to WLTC, NEDC, American FTP-75 cycles (with additions SC03 and US06) and own road driving cycle in the Rzeszow region. Based on the analysis carried out, it was established that laboratory tests will never 100% reflect those driving conditions and driving on the road. However, the WLTC test has the advantage of being more realistic. Its high average ride speeds, longer stops, long distance traveled and higher top speed are more realistic than the NEDC test. KEY WORDS: VEHICLE TESTING, EFFECTIVE Emissions, WORLD HARMONIZED PASSENGER VEHICLE TEST PROCEDURE, NEW EUROPEAN DRIVING CYCLE, FEDERAL TESTING PROCEDURE.



Author(s):  
S. K. Arun ◽  
I. N. Anida ◽  
J. S. Norbakyah ◽  
A. R. Salisa

Driving cycle is commonly known as the relationship and a series of speed-time profile. The study on this discipline aids vehicle manufacturers in vehicle construction, environmentalists in studying environment quality in proportion with vehicle emissions and traffic engineers to further investigate the behaviour of drivers and the road conditions which assist automotive industry in a better and energy efficient vehicle productions. In order to develop a proper driving cycle for selected routes, information and data based on real-time driving behaviour is important. This research focusses on the modelling of each component and latter designing a conceptual model in Simulink which takes up the data of speed of vehicles in SI unit which is m/s and draws out distance travelled and acceleration of the vehicle together with driving cycle of the route for given timestamp. This relation will be verified with existing Kuala Terengganu BasKITe driving cycle, highway fuel economy test (HWFET), new europian driving cycle (NEDC) and worldwide harmonised light vehicle test procedure (WLTP) driving cycles for the use of future projects and improvements of technology in studies and analysis of powertrain and electric vehicle performances.



Author(s):  
Kyle E. Niemeyer ◽  
Shane R. Daly ◽  
William J. Cannella ◽  
Christopher L. Hagen

Low-temperature combustion (LTC) engine concepts such as homogeneous charge compression ignition (HCCI) offer the potential of improved efficiency and reduced emissions of nitrogen oxide (NOx) and particulates. However, engines can only successfully operate in HCCI mode for limited operating ranges that vary depending on the fuel composition. Unfortunately, traditional ratings such as octane number (ON) poorly predict the auto-ignition behavior of fuels in such engine modes, and metrics recently proposed for HCCI engines have areas of improvement when wide ranges of fuels are considered. In this study, a new index for ranking fuel suitability for LTC engines was defined, based on the fraction of potential fuel savings achieved in the federal test procedure (FTP-75) light-duty vehicle driving cycle. Driving cycle simulations were performed using a typical light-duty passenger vehicle, providing pairs of engine speed and load points. Separately, single-zone naturally aspirated HCCI engine simulations were performed for a variety of fuels in order to determine the operating envelopes for each. These results were combined to determine the varying improvement in fuel economy offered by fuels, forming the basis for a fuel performance index. Results showed that, in general, lower octane fuels performed better, resulting in higher LTC fuel index values; however, ON alone did not predict fuel performance.



2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Hai Xu ◽  
Avinash Singh ◽  
Ahmet Kahraman ◽  
Joshua Hurley ◽  
Sam Shon

In order to boost the fuel economy of their vehicles, automotive Original Equipment Manufacturers (OEMs) and suppliers have been investigating a range of options from alternate vehicle propulsion systems down to optimized component level technologies. The hypoid gear set in a rear axle is one of the least efficient drive train components, and as such, provides unique opportunities for improvements. It has therefore attracted significant attention from researchers to reduce the power losses. Both loaded and unloaded power losses have been studied before and found to vary significantly with load and speed conditions. This paper will focus on the effects of the axle pinion bearing preload, axle gear oil levels, and operating temperatures on axle power losses during the fuel economy driving cycles where both axle load and speed vary significantly. In this paper, power loss measurements from experiments conducted on an automotive rear drive axle on a dedicated dynamometer will be presented. Tests were conducted under a range of speed and load conditions that were developed from Environmental Protection Agency (EPA) fuel economy driving cycles. Both urban and highway cycles were included in the tests. Separate tests were conducted for unloaded spin losses and loaded power losses. The tests were conducted at a few different controlled levels of gear oil operating temperatures, gear oil volumes, and pinion bearing preloads, and their influence on power losses was quantified. The measured power losses at a matrix of load and speed conditions provide a series of power loss maps as a function of gear oil operating temperature, oil volume, and bearing preload. Using these power loss maps, the overall axle efficiency or power loss during any driving cycle can be quantified by integrating the instantaneous power losses as the axle goes through the driving cycles. Similar maps can be created for other influences and the proposed procedure can be utilized to quantify their influences on a given driving cycle. Results from this study indicate that with the combination of appropriate preloads, gear oil volume, and temperature control, axle efficiency can potentially be improved by roughly 3% in the tested axle.



Author(s):  
Hanna Sara ◽  
David Chalet ◽  
Mickaël Cormerais ◽  
Jean-François Hetet

Since the main interest worldwide of green environment companies is to reduce pollutant emissions, the automotive industry is aiming to improve engine efficiency in order to reduce fuel consumption. Recently, studies have been shifted from upgrading the engine to the auxiliary systems attached to it. Thermal management is one of the successful fields that has shown promise in minimizing fuel consumption and reducing pollutant emissions. Throughout this work, a four-cylinder turbocharged diesel engine model was developed on GT-Power. Also, a thermal code has been developed in parallel on GT-Suite, in which the different parts of the coolant and lubricant circuits were modeled and calibrated to have the best agreement with the temperature profile of the two fluids in the system. Once the model was verified, hot coolant storage, a thermal management strategy, was applied to the system to assess the fuel consumption gain. The storage tank was located downstream the thermostat and upstream the radiator with three valves to control the coolant flow. The place was chosen to avoid negative impact on the cold start-up of the engine when the tank is at the ambient temperature. This strategy was applied on different driving cycles such as the NEDC, WLTC, CADC (urban and highway), and an in-house developed driving cycle. The ambient temperature was varied between −7°C to represent the coldest winter and 20°C. The results of this study summarize the ability of the hot coolant storage strategy in reducing the fuel consumption, and show the best driving cycle that needs to be applied on along with the influence of the different ambient temperatures.



Author(s):  
Frédérique Roy ◽  
Catherine Morency

The transportation sector is a major contributor to greenhouse gas (GHG) emissions, accounting for 14% of global emissions in 2010 according to the United States Environmental Protection Agency. In Quebec, this share amounts to 43%, of which 80% is caused by road transport according to the MinistÉre de l’Environnement et de la Lutte contre les changements climatiques of QuÅbec. It is therefore essential to support the actions taken to reduce GHGs emissions from this sector and to quantify the impact of these actions. To do so, accurate and reliable emission models are needed. Driving cycles are defined as speed profiles over time and they are a key element of emission models. They represent driving behaviors specific to various road types in each region. The most widely used method to construct driving cycles is based on Markov chains and consists of concatenating small sections of speed profiles, called microtrips, following a transition matrix. Two of the main steps involved in the development of driving cycles are microtrip segmentation and microtrip classification. In this study, several combinations of segmentation and clustering methods are compared to generate the most reliable driving cycle. Results show that segmentation of microtrips with a fixed distance of 250 m and clustering of the microtrips by applying a principal component analysis on many key parameters related to their speed and acceleration provide the most accurate driving cycles.



Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3064 ◽  
Author(s):  
José Huertas ◽  
Michael Giraldo ◽  
Luis Quirama ◽  
Jenny Díaz

Type-approval driving cycles currently available, such as the Federal Test Procedure (FTP) and the Worldwide harmonized Light vehicles Test Cycle (WLTC), cannot be used to estimate real fuel consumption nor emissions from vehicles in a region of interest because they do not describe its local driving pattern. We defined a driving cycle (DC) as the time series of speeds that when reproduced by a vehicle, the resulting fuel consumption and emissions are similar to the average fuel consumption and emissions of all vehicles of the same technology driven in that region. We also declared that the driving pattern can be described by a set of characteristic parameters (CPs) such as mean speed, positive kinetic energy and percentage of idling time. Then, we proposed a method to construct those local DC that use fuel consumption as criterion. We hypothesized that by using this criterion, the resulting DC describes, implicitly, the driving pattern in that region. Aiming to demonstrate this hypothesis, we monitored the location, speed, altitude, and fuel consumption of a fleet of 15 vehicles of similar technology, during 8 months of normal operation, in four regions with diverse topography, traveling on roads with diverse level of service. In every region, we considered 1000 instances of samples made of m trips, where m varied from 4 to 40. We found that the CPs of the local driving cycle constructed using the fuel-based method exhibit small relative differences (<15%) with respect to the CPs that describe the driving patterns in that region. This result demonstrates the hypothesis that using the fuel based method the resulting local DC exhibits CPs similar to the CPs that describe the driving pattern of the region under study.



2021 ◽  
Vol 268 ◽  
pp. 01054
Author(s):  
Peilin Geng ◽  
Yimin Wang ◽  
Wei Zhao ◽  
Xionghui Zou

In this paper, the light duty that meets the China 6 emission standard is selected to study the emission characteristics of different emission control technology routes under China light-duty vehicle test cycle (CLTC). The results show that the cold start stage of CLTC cycle is still the stage with the most pollutant emissions. The THC, CO and NOx emissions of vehicles on the supercharged direct injection technology are higher than those on the naturally aspirated port fuel injection technology. In terms of reducing the exhaust emission, PHEV technology route is the best, followed by naturally aspirated PFI technology route, and then turbocharged direct injection with GPF route.



Sign in / Sign up

Export Citation Format

Share Document