scholarly journals DC Current Limiting Characteristics of Flux-Coupled Type SFCL Using Superconducting Element Connected in Parallel in a DC System

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1096
Author(s):  
Young-Pil Kim ◽  
Seok-Cheol Ko

In this paper, the fault current limiting (FCL) characteristics of a flux-coupled type superconducting fault current limiter (SFCL) with parallel connection between two windings in a DC system were analyzed. The flux-coupled type SFCL was composed of two coils connected in parallel and a superconducting element (SE), which was connected in series with the secondary coil. The flux-coupled type SFCL works in DC systems similar to those in AC systems. Before a fault occurs, the respective magnetic fluxes generated by the two coils connected in parallel offset each other, maintaining the voltage induced in the two coils at zero. In case of a fault, however, resistance is generated in the SE, preventing the magnetic fluxes generated by the two coils from offsetting each other. Thus, some voltage is induced in the two coils, and this starts to limit the fault current. DC short circuit tests were conducted, and the test results confirmed that the flux-coupled type SFCL with the two parallel connected coils was effective in limiting the fault current in a DC system. Additionally, the effect of the wiring direction of the two coils on the SFCL’s FCL performance and operating current, limiting impedance, and instantaneous power load was further analyzed, and as a result, the performance conditions of the SFCL in a DC system were determined.

2018 ◽  
Vol 3 (10) ◽  
pp. 38-44
Author(s):  
D. C. Idoniboyeobu ◽  
S. L. Braide ◽  
Wigwe Elsie Chioma

This research work proposed an improved Resonant Fault Current Limiting (RFCL) protection scheme to reduce the impact of three-phase short-circuit faults in a power system sub-transmission network. The model used an interpolator-extrapolator technique based on a Resonant Fault Current Limiter (RFCL) for automating the procedure of predicting the required reactor value that must be in resonant circuit to limit the short-circuit current values to permissible values. Using the developed model, short-circuit fault simulations on the three phases of the transmission line (Phase A-C) were performed in the MATLAB-SIMULINK environment. Simulation results were obtained by varying the resonant inductance (reactor) parameter of the RFCL circuit for each of the phases to obtain permissible short-circuit current levels and the values used to program a functional interpolator-extrapolator in MATLAB; the resonant values were typically set to values of inductance equal to 0.001H, 0.01H and from 0.1H to 0.5H in steps of 0.1H. Simulation results revealed the presence of very high short-circuit current levels at low values of the resonant inductor. From the results of simulations, there are indications that the RFCL approach is indeed very vital in the reduction of the short circuit current values during the fault and can safeguard the circuit breaker mechanism in the examined power system sub-transmission system. In addition, lower fault clearing times can be obtained at higher values of inductances; however, the clearance times start to converge at inductance values of 0.1H and above.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4210
Author(s):  
Kang-Cheol Cho ◽  
Min-Ki Park ◽  
Sung-Hun Lim

Recently, a lot of interesting research has been conducted to solve the fault current problem of the DC system. In long-distance transmission, DC transmission is more economical than AC transmission. The connection of power grids with a DC system can also better control the power flow and provide high stability. However, the control of the fault current in a DC system is more difficult to handle than in an AC system because the DC system does not make a zero point, unlike the AC system. In addition, there is a disadvantage, in that an arc occurs when a circuit breaker operates. In this paper, a new type of DC superconducting fault current limiter (SFCL) is proposed. This new type of SFCL is composed of two superconducting elements, a current limiting resistor/reactor (CLR), and a transformer. With the proposed SFCL, the DC fault current limiting experiments were performed and the DC fault current limiting characteristics of this SFCL due to the component of the CLR were analyzed.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 569 ◽  
Author(s):  
Tae-Hee Han ◽  
Seok-Cheol Ko ◽  
Sung-Hun Lim

In this paper, a bridge type superconducting fault current limiter (SFCL) with a single high-temperature superconducting (HTSC) element is proposed to allow fault current limiting operation in direct current (DC) conditions. First, the principle of operation of the bridge type SFCL with a single HTSC element using flux-coupling was presented. After the fault occurrence, the fault current limiting operation and voltage characteristics, the power load characteristics of each device, and the energy consumption of the two coils and the HTSC element were analyzed in the proposed SFCL. As a result, it is confirmed that in the case of the additive polarity winding, the power consumption and the energy consumption of the HTSC element were lower than those in the subtractive polarity winding, and the fault current limiting characteristics were excellent.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Saurabh Kulkarni ◽  
Surya Santoso

This paper describes and demonstrates the principle and efficacy of a novel direct current fault interruption scheme using a reactor in series with a controlled rectifier and a conventional AC circuit breaker. The presence of the series reactor limits the capacitive discharge current from the DC filter capacitor at the output terminals of the phase-controlled rectifier. In addition, the series reactor along with the filter capacitor forms an underdamped series RLC circuit which forces the fault current to oscillate about zero. This synthetic alternating current can then be interrupted using a conventional AC circuit breaker. The selection criteria for the series reactor and overcurrent protection are presented as well. Using the proposed scheme for an example case, a DC fault current magnitude is reduced from 56 kA to 14 kA, while the interruption time is reduced from 44 ms to 25 ms.


2013 ◽  
Vol 721 ◽  
pp. 527-530
Author(s):  
Lei Yao ◽  
Jun Mei ◽  
Jian Yong Zheng ◽  
Bin Liu ◽  
You Xu

In order to limit the short-circuit current, and to prevent the power grid and its equipment from the shock of the short circuit, the fault current limiter with detection, trigger and limiting was introduced. A small resistive type superconducting fault current limiter prototype based on MgB2, cooled by liquid helium and heliumgas, was developed and tested by a test system. The test result showed that the prototype based on MgB2 produced superior limiting performance, the short-circuit current suppressing ratio was up to more than 45%, and with the rise of the voltage level, the current limiting capability was also gradually increased, up to 56%.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5533
Author(s):  
Seok-Cheol Ko ◽  
Tae-Hee Han ◽  
Sung-Hun Lim

In this study, the characteristics of the double quench and instantaneous power of a superconducting fault current limiter (SFCL) using two magnetically coupled windings were analyzed. In the proposed model of SFCL, two magnetically coupled windings are wound on the iron core and each winding is connected to one superconducting element. When a fault occurs, the SFCL can limit the fault current by the double quench occurrence of two superconducting elements. In order to analyze the influence of the winding direction on the fault current limiting characteristics of the proposed SFCL, two magnetically coupled windings were designed to allow the same and the reverse directions. From the simulated short circuit experiment, the currents and the voltages of two coupled windings and two superconducting elements were measured and the instantaneous power and the double quench occurrence were analyzed. It was confirmed from the experimental results analysis that the fault current limiting characteristics of the SFCL were more favorable in the reverse winding direction than in the same winding direction.


Sign in / Sign up

Export Citation Format

Share Document