scholarly journals Facile Synthesis of Lanthanum Strontium Cobalt Ferrite (LSCF) Nanopowders Employing an Ion-Exchange Promoted Sol-Gel Process

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1800
Author(s):  
Sri Rahayu ◽  
Adi Ab Fatah ◽  
Girish M. Kale

The perovskite nanopowders of lanthanum strontium cobalt ferrite (LSCF) have been synthesized using the alginate mediated ion-exchange process. This perovskite-based material is a promising cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs) due to its high electrical conductivity, low polarizability, high catalytic activity for oxygen reduction, enhanced chemical stability at an elevated temperature in high oxygen potential environment and high compatibility with the ceria based solid electrolytes. Phase pure LSCF 6428, LSCF 6455, and LSCF 6482 corresponding to La0.6Sr0.4Co0.2Fe0.8O3-δ, La0.6Sr0.4Co0.5Fe0.5O3-δ, and La0.6Sr0.4Co0.8Fe0.2O3-δ, respectively were successfully synthesized. The simultaneous thermal analysis (DSC-TGA) and XRD were used to determine the optimum calcination temperature for the dried ion-exchanged beads. Single phase nanopowders of LSCF (6428, 6455, and 6482) have been successfully prepared at a calcination temperature of 700 °C. The TGA analysis showed that every ton of LSCF-ALG dried beads can potentially yield 360 kg of LSCF nanopowders suggesting a potential for scaling-up of the process of manufacturing nanopowders of LSCF.

2005 ◽  
Vol 30 (1) ◽  
pp. 51-58 ◽  
Author(s):  
C. U. Ferreira ◽  
J. E. Gonçalves ◽  
Y. V. Kholin ◽  
Y. Gushikem

The porous mixed oxide SiO2/TiO2/Sb2O5 obtained by the sol-gel processing method presented a good ion exchange property and a high exchange capacity towards the Li+, Na+ and K+ ions. In the H+/M+ ion exchange process, the H+ / Na+ could be described as presenting an ideal character. The ion exchange equilibria of Li+ and K+ were quantitatively described with the help of the model of fixed tetradentate centers. The results of simulation evidence that for the H+ / Li+ exchange the usual situation takes place: the affinity of the material to the Li+ ions is decreased with increasing the degree of ion exchange. On the contrary, for K+ the effects of positive cooperativity, that facilitate the H+ / K+ exchange, were revealed.


2002 ◽  
Vol 756 ◽  
Author(s):  
Seiichi Suda ◽  
Hiroyuki Ishii ◽  
Kiyoshi Kanamura

ABSTRACTLithium ionic conductor, (La, Li)TiO3, has synthesized with La/Li-TiO2 amorphous spheres that were obtained by sol-gel and ion-exchange method, and succeeding La3+/Li+ partial ion exchange. In this work, La /Li ion exchange conditions were mainly investigated in order to obtain dense (La, Li)TiO3 ceramics that have highly ionic conductivities. La +/Li+ ion exchange behavior was changed with ion-exchange solutions, and the Li/Ti ratio was increased with an increase in ethanol/water ratio in the solvent used for La3+/Li+ partial ion exchange. The use of an adequate ethanol/water ratio resulted in La/Li-TiO2 amorphous spheres with the composition of La/Li/Ti=0.54/0.34/1.00, and sintering of the spheres at 1200°C for 5 h in air led to dense (La, Li)TiO3 ceramics which exhibit the conductivity of 4.0 × 10-3 S cm-1 at 25°C.


2020 ◽  
Vol 16 ◽  
Author(s):  
Reda M. El-Shishtawy ◽  
Abdullah M. Asiri ◽  
Nahed S. E. Ahmed

Background: Color effluents generated from the production industry of dyes and pigments and their use in different applications such as textile, paper, leather tanning, and food industries, are high in color and contaminants that damage the aquatic life. It is estimated that about 105 of various commercial dyes and pigments amounted to 7×105 tons are produced annually worldwide. Ultimately, about 10–15% is wasted into the effluents of the textile industry. Chitin is abundant in nature, and it is a linear biopolymer containing acetamido and hydroxyl groups amenable to render it atmospheric by introducing amino and carboxyl groups, hence able to remove different classes of toxic organic dyes from colored effluents. Methods: Chitin was chemically modified to render it amphoteric via the introduction of carboxyl and amino groups. The amphoteric chitin has been fully characterized by FTIR, TGA-DTG, elemental analysis, SEM, and point of zero charge. Adsorption optimization for both anionic and cationic dyes was made by batch adsorption method, and the conditions obtained were used for studying the kinetics and thermodynamics of adsorption. Results: The results of dye removal proved that the adsorbent was proven effective in removing both anionic and cationic dyes (Acid Red 1 and methylene blue (MB)), at their respective optimum pHs (2 for acid and 8 for cationic dye). The equilibrium isotherm at room temperature fitted the Freundlich model for MB, and the maximum adsorption capacity was 98.2 mg/g using 50 mg/l of MB, whereas the equilibrium isotherm fitted the Freundlich and Langmuir model for AR1 and the maximum adsorption capacity was 128.2 mg/g. Kinetic results indicate that the adsorption is a two-step diffusion process for both dyes as indicated by the values of the initial adsorption factor (Ri) and follows the pseudo-second-order kinetics. Also, thermodynamic calculations suggest that the adsorption of AR1 on the amphoteric chitin is an endothermic process from 294 to 303 K. The result indicated that the mechanism of adsorption is chemisorption via an ion-exchange process. Also, recycling of the adsorbent was easy, and its reuse for dye removal was effective. Conclusion: New amphoteric chitin has been successfully synthesized and characterized. This resin material, which contains amino and carboxyl groups, is novel as such chemical modification of chitin hasn’t been reported. The amphoteric chitin has proven effective in decolorizing aqueous solution from anionic and cationic dyes. The adsorption behavior of amphoteric chitin is believed to follow chemical adsorption with an ion-exchange process. The recycling process for few cycles indicated that the loaded adsorbent could be regenerated by simple treatment and retested for removing anionic and cationic dyes without any loss in the adsorbability. Therefore, the study introduces a new and easy approach for the development of amphoteric adsorbent for application in the removal of different dyes from aqueous solutions.


1986 ◽  
Vol 20 (9) ◽  
pp. 1177-1184 ◽  
Author(s):  
Arup K. Sengupta ◽  
Dennis Clifford ◽  
Suresh Subramonian

1985 ◽  
Vol 60 ◽  
Author(s):  
J. D. Barrie ◽  
D. L. Yang ◽  
B. Dunn ◽  
O. M. Stafsudd

AbstractIon exchanged ß“-aluminas display a number of interesting optical properties which suggest that the material is well suited for application as a solid state laser host. Small platelets of Nd3+ Ion exchanged β“-alumina exhibit laser action with gain coefficients many times greater than YAG. The versatility of the ion exchange process enables one to form a wide variety of compounds with different active ions and concentrations, thereby allowing the study of many different effects within a single host crystal.


2013 ◽  
Vol 284-287 ◽  
pp. 230-234
Author(s):  
Yu Jen Chou ◽  
Chi Jen Shih ◽  
Shao Ju Shih

Recent years mesoporous bioactive glasses (MBGs) have become important biomaterials because of their high surface area and the superior bioactivity. Various studies have reported that when MBGs implanted in a human body, hydroxyl apatite layers, constituting the main inorganic components of human bones, will form on the MBG surfaces to increase the bioactivity. Therefore, MBGs have been widely applied in the fields of tissue regeneration and drug delivery. The sol-gel process has replaced the conventional glasses process for MBG synthesis because of the advantages of low contamination, chemical flexibility and lower calcination temperature. In the sol-gel process, several types of surfactants were mixed with MBG precursor solutions to generate micelle structures. Afterwards, these micelles decompose to form porous structures after calcination. Although calcination is significant for contamination, crystalline and surface area in MBG, to the best of the authors’ knowledge, only few systematic studies related to calcination were reported. This study correlated the calcination parameters and the microstructure of MBGs. Microstructure evaluation was characterized by transmission electron microscopy and nitrogen adsorption/desorption. The experimental results show that the surface area and the pore size of MBGs decreased with the increasing of the calcination temperature, and decreased dramatically at 800°C due to the formation of crystalline phases.


2012 ◽  
Vol 430-432 ◽  
pp. 941-948 ◽  
Author(s):  
Yong Sheng Shi ◽  
Yu Zhen Shi ◽  
Lin Wang

Studies have been carried out on removal of Se(Ⅵ) from raw water by ion exchange process. The experiment results indicate that employment of strong-base anion exchange resin of 201×7 can receive a desirable result for Se removal. It is particularly true that the removal rate of Se(Ⅵ) can achieve more than 96% when the Se(Ⅵ) concentration in raw water is 100μg/L. This allows selenium concentration of the supply water in full conformity to the quality standard currently available for drinking water. Ion exchange process for Se removal has been proved to be competent for its efficiency, cost effectiveness and easy operation.


Sign in / Sign up

Export Citation Format

Share Document