scholarly journals Numerical Investigation of the Influence of the Drill String Vibration Cyclic Loads on the Development of the Wellbore Natural Fracture

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2015
Author(s):  
Arnaud Regis Kamgue Lenwoue ◽  
Jingen Deng ◽  
Yongcun Feng ◽  
Haitao Li ◽  
Adefarati Oloruntoba ◽  
...  

Wellbore instability is one of the most serious issues faced in the drilling process. During drilling operations, the cyclic loads applied on the fractured formation progressively modify the initial parameters (i.e., length and width) of the fractured formation, thus resulting into undesirable wellbore instability. In this paper, using a nonlinear finite element software (ABAQUS) as the numerical simulator, a poro-elasto-plastic model has been established which aimed at analyzing the influence of drill string vibration cyclic loads on the development of the wellbore natural fracture. The numerical results showed that the fracture width as a function of time profiles followed a sinusoidal behavior similar to the drill string vibration cyclic load profiles. For different cyclic load magnitudes with constant number of cyclic loads, the highest percentage increase of the fracture width after integration of cyclic loads was 64.77%. Interestingly, the fracture width increased with the fracture length in the near wellbore region while it globally decreased in the region far away from the wellbore. But for constant cyclic load magnitude with different number of cyclic loads, the biggest percentage increase of the fracture width after integration of cyclic loads was slightly lower representing 63.12% while the oscillating period of the fracture width increased with the number of cyclic loads. The parametric study revealed that the drill string vibration cyclic loads were relatively independent of the fracture length and the bottom hole pressure. However, the fracture width and the loss circulation rates were considerably impacted by the drill string vibration and the highest percentage increase of the loss circulation rate after integration of cyclic loads was 14.3%. This study provides an insight into the coupling of the fracture rock development and the continuous cyclic loads generated by drill string vibrations which is an aspect that has been rarely discussed in the literature.

2021 ◽  
Author(s):  
Arnaud Regis Kamgue Lenwoue ◽  
Jingen Deng ◽  
Yongcun Feng ◽  
Naomie Beolle Songwe Selabi

Abstract Wellbore instability is one of the most important causes of Non-Productive Time during drilling operations causing billions of dollars of losses every year. During the drilling stage, the Equivalent Circulent Density (ECD) is subjected to fluctuations caused by some factors such as the drill string vibrations cyclic loads. The fluctuating ECD applied on the fractured formation progressively modifies the initial parameters of the fractured formation such as its length and its width and this process finally results into wellbore instability. In this research, a poroelastic model based on a finite element method has been established to analyze the influence of the drill string vibration cyclic loads on the development of the wellbore natural fracture. The analysis was conducted with a two-dimensional plane strain model. A traction-separation law based on energy has been proposed for the Cohesive Zone Model. A nonlinear finite element software ABAQUS was utilized as the numerical simulator. The numerical results showed that the profiles of the fracture width as a function of time follow a sinusoidal behavior similar to the behavior of the drill string vibration cyclic loads profile. For different values of the Weight On Bit (WOB) and constant drill string Revolution Per Minute (RPM), an increase of the fracture width with the fracture length is observed in the near wellbore region. In the region far away the wellbore, the fracture width globally decreases with an increase of the fracture length for each fracture profile. the investigation of the effect of some drilling operational parameters on the development of the wellbore natural fracture also demonstrated that the drillstring vibration cyclic loads lead to an increase of the fracture length, fracture width, the loss circulation and the Bottom Hole Pressure. This study couples the integration of the fracture rock development with the continuous cyclic load generated by drill string vibrations. This aspect has been rarely discussed in the literature. The study indicates that the cyclic loads significantly affect the development of the wellbore natural fracture during drilling operations, and therefore has an important impact on the wellbore stability analysis.


2021 ◽  
Author(s):  
Arnaud Regis Kamgue Lenwoue ◽  
Jingen Deng ◽  
Yongcun Feng ◽  
Naomie Beolle Songwe Selabi

Abstract Wellbore instability is one of the most important causes of Non-Productive Time causing billions of dollars of losses every year in the petroleum industry. During the drilling operations, the drilling mud is generally utilized to maintain the wellbore stability. However, the drilling mud is subjected to fluctuations caused by several processes such as the drill string vibration cyclic loads which can result into wellbore instability. In this paper, a nonlinear finite element software ABAQUS is utilized as the numerical simulator to evaluate the time dependent pore pressure and stress distribution around the wellbore after integration of drill string vibration cyclic loads. A MATLAB program is then developed to investigate the wellbore stability by computation of the time dependent wellbore collapse pressure and fracture pressure. The numerical results showed that the safe mud window which was initially constant became narrower with the time after integration of vibration cyclic load. The collapse pressure without vibration cyclic load increased by 14.33 % at the final simulation time while the fracture pressure decreased by 13.80 %. Interestingly, the safe mud windows widened with the increase of the normalized wellbore radius as the wellbore fracture pressure increased and the collapse pressure decreased. This study provides an insight into the coupling of the wellbore stability and the continuous cyclic loads generated by drill string vibrations which is an aspect that has been rarely discussed in the literature.


2021 ◽  
Author(s):  
Ahmed AlJanahi ◽  
Sayed Abdelrady ◽  
Hassan AlMannai ◽  
Feras AlTawash ◽  
Eyad Ali ◽  
...  

Abstract Carbonate formations often require stimulation treatments to be developed economically. Sometimes, proppant fracturing yields better results than acid stimulation. Carbonates are seldom stimulated with large-mesh-size proppants due to admittance issues caused by fissures and high Young’s modulus and narrow fracture width. The Magwa formation of Bahrain’s Awali brownfield is a rare case in which large treatments using 12/20-mesh proppant were successful after the more than 50 years of field development. To achieve success, a complex approach was required during preparation and execution of the hydraulic fracturing campaign. During the first phase, the main challenges that restricted achieving full production potential in previous stimulation attempts (both acid and proppant fracturing) were identified. Fines migration and shale instability were addressed during advanced core testing. Tests for embedment were conducted, and a full suite of logs was obtained to improve geomechanical modeling. In addition, a target was set to maximize fracture propped length to address the need for maximum reservoir contact in the tight Magwa reservoir and to maximize fracture width and conductivity. Sufficient fracture width in the shallow oil formation was required to withstand embedment. Sufficient conductivity was required to clean out the fracture under low-temperature conditions (124°F) and to minimize drawdown along the fracture considering the relatively low energy of the formation (pore pressure less than 1,000 psi). Understanding the fracture dimensions was critical to optimize the design. Independent measurement using high-resolution temperature logging and advanced sonic anisotropy measurements after fracturing helped to quantify fracture height. As a result of the applied comprehensive workflow, 18 wells were successfully stimulated, including three horizontal wellbores with multistage fracturing - achieving effective fracture half-lengths of 450-to 500-ft. Oil production from the wells exceeded expectations and more than doubled the results of all the previous attempts. Production decline rates were also less pronounced due to achieved fracture length and the ability to produce more reservoir compartments. The increase in oil recovery is due to the more uniform drainage systems enabled by the conductive fractures. The application of new and advanced techniques taken from several disciplines enabled successful propped fracture stimulation of a fractured carbonate formation. Extensive laboratory research and independent geometry measurements yielded significant fracture optimization and resulted in a step-change in well productivity. The techniques and lessons learned will be of benefit to engineers dealing with shallow carbonate reservoirs around the world.


2021 ◽  
Author(s):  
Louis Frederic Antoine Champain ◽  
Syed Zahoor Ullah ◽  
Alexey Ruzhnikov

Abstract Drilling and completion of the surface and intermediate sections in some fields is extremely challenging due to wellbore instability, especially accomplished with complete losses. Such circumstances lead to several time-consuming stuck pipe events, when existing standard ways of drilling did not lead to a permanent resolution of the problems. After exhausting the available conventional techniques without sustainable success, unorthodox solutions were required to justify the well delivery time and cost. Here comes the Casing While Drilling (CwD), being the most time and cost-effective solution to wellbore instability. CwD is introduced at full throttle aiming at the well cost reduction and well quality improvement. The implementation plan was divided in three phases. The first phase was a remedial solution to surface and intermediate sections drilling and casing off to prevent stuck pipe events and provide smooth well delivery performances. After successful implementation of CwD first phase, CwD was taken to the next level by shifting it from a mitigation to an optimization measure. Each step of CwD shoe-to-shoe operations was analysed to improve its performances: drill-out (D/O) of 18⅝-in shoe track with CwD, optimum drilling parameters per formation and CwD bit design. Implemented in 19 wells, CwD shoe-to-shoe performances have been brought up or even above standard rotary bottom hole assembly (BHA) benchmark. Planning for third phase is undergoing whereby CwD is aiming to optimize a well construction to reduce well delivery time, by combining surface and intermediate sections thus eliminating one casing string. Numerous challenges are being worked on including open hole (OH) isolation packer which conform to and seal with the borehole uneven surface. Special "for purpose built" expandable steel packer and stage tool have been manufactured and qualified for the specific application. A candidate well has been chosen and agreed for first trial. The key areas of improvement include, drilling and casing off the surface and intermediate sections while competing with standard rotary BHA performances and slimming down the well profile towards tremendous time and costs savings. This paper encompasses details of constructions of various wells with sufficient contingencies to combat any expected hole problems without compromising the well quality while keeping the well within budget and planned time. It also provides an analysis of the well trials that were executed during the implementation of first and second phases of CwD implementation and the captured lessons learnt which are being carried forward to the next phase. This paper provides the technique on how CwD can be used to help with three aspects of drilling, successfully mitigating holes problems by reducing OH exposure time and to eliminate drill string tripping and modifying conventional casing design to reduce well time and cost by eliminating one casing string.


Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050013
Author(s):  
RICHENG LIU ◽  
LIYUAN YU ◽  
YANG GAO ◽  
MING HE ◽  
YUJING JIANG

This study proposed analytical solutions for permeability of a fractal-like tree network model with fractures having variable widths, which has not been reported before, if any. This model is more realistic with natural fracture networks than the traditional constant width fracture network models. The results show that considering fracture width variations decreases the permeability. Taking the fracture width ratio that equals to 0.6 and the total number of branching levels that equals to 30 as an example, the permeability decreases by more than three orders of magnitude with respect to that of a constant width fracture network model. The fracture length ratio plays a more significant role in permeability when it is larger than 0.8 than that is less than 0.8. The permeability is more sensitive to the fracture aperture ratio that is less than 0.8. When the total number of branching levels is large (i.e. 30), the permeability changes significantly (i.e. more than three orders of magnitude); whereas when the total number of branching levels is small (i.e. 5), the permeability varies in a small range (i.e. less than one order of magnitude). When taking into account the relationships among fracture length ratio, fracture aperture ratio and fracture width ratio, the parameters can be easily obtained and analytical solutions for permeability can also be easily derived. The empirical function for predicting critical hydraulic gradient is proposed, which can be used to estimate whether the fluid flow is within the linear flow regime and whether the proposed analytical solutions are applicable in the present study.


1974 ◽  
Vol 96 (3) ◽  
pp. 361-364 ◽  
Author(s):  
P. R. K. Murti

The dynamic behavior of squeeze film in a narrow porous journal bearing under a cyclic load is analyzed. A thin-walled bearing with a nonrotating journal is considered and a closed form expression for the pressure distribution is derived. The locus of the journal center is found by numerical methods and it is established with an example that actual contact between the journal and bearing can be avoided by appropriate design of the bearing. Consequently, it is proved that pure squeeze films have a load capacity only under cyclic loads. The analysis also reveals that the permeability of the bearing material and the wall thickness of the bearing influence significantly the operating eccentricity ratio.


2012 ◽  
Author(s):  
Abdolali Esmaeili ◽  
Behzad Elahifar ◽  
Rudolf Konrad Fruhwirth ◽  
Gerhard Thonhauser

Sign in / Sign up

Export Citation Format

Share Document