On the Influence of the Equivalent Circulent Density Fluctuations on the Development of the Wellbore Natural Fracture

2021 ◽  
Author(s):  
Arnaud Regis Kamgue Lenwoue ◽  
Jingen Deng ◽  
Yongcun Feng ◽  
Naomie Beolle Songwe Selabi

Abstract Wellbore instability is one of the most important causes of Non-Productive Time during drilling operations causing billions of dollars of losses every year. During the drilling stage, the Equivalent Circulent Density (ECD) is subjected to fluctuations caused by some factors such as the drill string vibrations cyclic loads. The fluctuating ECD applied on the fractured formation progressively modifies the initial parameters of the fractured formation such as its length and its width and this process finally results into wellbore instability. In this research, a poroelastic model based on a finite element method has been established to analyze the influence of the drill string vibration cyclic loads on the development of the wellbore natural fracture. The analysis was conducted with a two-dimensional plane strain model. A traction-separation law based on energy has been proposed for the Cohesive Zone Model. A nonlinear finite element software ABAQUS was utilized as the numerical simulator. The numerical results showed that the profiles of the fracture width as a function of time follow a sinusoidal behavior similar to the behavior of the drill string vibration cyclic loads profile. For different values of the Weight On Bit (WOB) and constant drill string Revolution Per Minute (RPM), an increase of the fracture width with the fracture length is observed in the near wellbore region. In the region far away the wellbore, the fracture width globally decreases with an increase of the fracture length for each fracture profile. the investigation of the effect of some drilling operational parameters on the development of the wellbore natural fracture also demonstrated that the drillstring vibration cyclic loads lead to an increase of the fracture length, fracture width, the loss circulation and the Bottom Hole Pressure. This study couples the integration of the fracture rock development with the continuous cyclic load generated by drill string vibrations. This aspect has been rarely discussed in the literature. The study indicates that the cyclic loads significantly affect the development of the wellbore natural fracture during drilling operations, and therefore has an important impact on the wellbore stability analysis.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2015
Author(s):  
Arnaud Regis Kamgue Lenwoue ◽  
Jingen Deng ◽  
Yongcun Feng ◽  
Haitao Li ◽  
Adefarati Oloruntoba ◽  
...  

Wellbore instability is one of the most serious issues faced in the drilling process. During drilling operations, the cyclic loads applied on the fractured formation progressively modify the initial parameters (i.e., length and width) of the fractured formation, thus resulting into undesirable wellbore instability. In this paper, using a nonlinear finite element software (ABAQUS) as the numerical simulator, a poro-elasto-plastic model has been established which aimed at analyzing the influence of drill string vibration cyclic loads on the development of the wellbore natural fracture. The numerical results showed that the fracture width as a function of time profiles followed a sinusoidal behavior similar to the drill string vibration cyclic load profiles. For different cyclic load magnitudes with constant number of cyclic loads, the highest percentage increase of the fracture width after integration of cyclic loads was 64.77%. Interestingly, the fracture width increased with the fracture length in the near wellbore region while it globally decreased in the region far away from the wellbore. But for constant cyclic load magnitude with different number of cyclic loads, the biggest percentage increase of the fracture width after integration of cyclic loads was slightly lower representing 63.12% while the oscillating period of the fracture width increased with the number of cyclic loads. The parametric study revealed that the drill string vibration cyclic loads were relatively independent of the fracture length and the bottom hole pressure. However, the fracture width and the loss circulation rates were considerably impacted by the drill string vibration and the highest percentage increase of the loss circulation rate after integration of cyclic loads was 14.3%. This study provides an insight into the coupling of the fracture rock development and the continuous cyclic loads generated by drill string vibrations which is an aspect that has been rarely discussed in the literature.


1968 ◽  
Vol 90 (4) ◽  
pp. 671-679 ◽  
Author(s):  
D. W. Dareing ◽  
B. J. Livesay

This paper discusses longitudinal and angular drill-string vibrations and supporting field measurements taken with a special downhole recording instrument. Computer programs based on the theory are used to calculate longitudinal and angular vibrations (caused by periodic bit motions) along the drill string; field measurements made during actual drilling operations are used to check computer calculations. The main difference between this and other theory on the same problem is the inclusion of friction, which acts along the length of a drill string and impedes longitudinal and angular vibrations. For the sake of simplicity, the effect of different types of friction, such as fluid, rubbing, and material, which act along the string, is approximated by the effect produced by viscous friction. This approximation is generally accepted and appears to give adequate results for the drill-string vibration problem.


2021 ◽  
Author(s):  
Arnaud Regis Kamgue Lenwoue ◽  
Jingen Deng ◽  
Yongcun Feng ◽  
Naomie Beolle Songwe Selabi

Abstract Wellbore instability is one of the most important causes of Non-Productive Time causing billions of dollars of losses every year in the petroleum industry. During the drilling operations, the drilling mud is generally utilized to maintain the wellbore stability. However, the drilling mud is subjected to fluctuations caused by several processes such as the drill string vibration cyclic loads which can result into wellbore instability. In this paper, a nonlinear finite element software ABAQUS is utilized as the numerical simulator to evaluate the time dependent pore pressure and stress distribution around the wellbore after integration of drill string vibration cyclic loads. A MATLAB program is then developed to investigate the wellbore stability by computation of the time dependent wellbore collapse pressure and fracture pressure. The numerical results showed that the safe mud window which was initially constant became narrower with the time after integration of vibration cyclic load. The collapse pressure without vibration cyclic load increased by 14.33 % at the final simulation time while the fracture pressure decreased by 13.80 %. Interestingly, the safe mud windows widened with the increase of the normalized wellbore radius as the wellbore fracture pressure increased and the collapse pressure decreased. This study provides an insight into the coupling of the wellbore stability and the continuous cyclic loads generated by drill string vibrations which is an aspect that has been rarely discussed in the literature.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Sadok Sassi ◽  
Jamil Renno ◽  
Han Zhou ◽  
Amr Baz

Abstract During the drilling process in oil and gas fields, slender drill strings often experience a multitude of complex and simultaneous vibrational phenomena. Drill string vibrations hinder the drilling process and can cause premature wear and damage to the drilling equipment. Here, the suppression of drill string vibrations during drilling operations is experimentally investigated using a novel drill string design, based on the use of innovative periodic inserts that control the vibration transmissibility in different directions. These inserts are equipped with viscoelastic rings that act as sources of local resonances, surrounding piezoelectric actuators that generate internal axial loading when electrically excited. An experimental prototype that combined all these details was constructed and tested to demonstrate the periodic drill string's feasibility and effectiveness in minimizing undesirable vibrations. The obtained results indicate that the periodic inserts’ careful design can effectively enhance the drill strings’ dynamic behavior and conveniently regulate its bandgap characteristics. Both radial and axial vibrations were controlled, and the vibrations’ amplitude was reduced significantly over a wide range of frequencies. The proposed approach appears to present a viable means for designing intelligent drill strings with tunable bandgap characteristics.


Author(s):  
Sergio Amat ◽  
Gustavo E. Henríquez Velez ◽  
María J. Legaz

The offshore industry has a significant impact on the global economy and it is expected to grow over the next 4 years. A crucial part of an offshore structure is the drill string. Drill strings can be seriously damaged by vibration during drilling operations. The control of vibrations in drill strings is essential. In drilling wells, this is useful to minimize the risks of well loss and also to improve drilling performance. The objective of this study is to model and simulate the vibrations in drill strings. This is made to know the region of stabilization of the system and to establish the optimal parameters of drilling which can be manipulated from the driller console, such as angular velocity of the drill string on the surface and the weight on the drill bit. The simulation of these vibrations is made by solving the differential equations that describe these phenomena. An interface for the manipulation of variables involved in the models of the drill string has been designed and shown in this work.


2021 ◽  
Author(s):  
Hussain AlBahrani ◽  
Nobuo Morita

Abstract In many drilling scenarios that include deep wells and highly stressed environments, the mud weight required to completely prevent wellbore instability can be impractically high. In such cases, what is known as risk-controlled wellbore stability criterion is introduced. This criterion allows for a certain level of wellbore instability to take place. This means that the mud weight calculated using this criterion will only constrain wellbore instability to a certain manageable level, hence the name risk-controlled. Conventionally, the allowable level of wellbore instability in this type of models has always been based on the magnitude of the breakout angle. However, wellbore enlargements, as seen in calipers and image logs, can be highly irregular in terms of its distribution around the wellbore. This irregularity means that risk-controlling the wellbore instability through the breakout angle might not be always sufficient. Instead, the total volume of cavings is introduced as the risk control parameter for wellbore instability. Unlike the breakout angle, the total volume of cavings can be coupled with a suitable hydraulics model to determine the threshold of manageable instability. The expected total volume of cavings is determined using a machine learning (ML) assisted 3D elasto-plastic finite element model (FEM). The FEM works to model the interval of interest, which eventually provides a description of the stress distribution around the wellbore. The ML algorithm works to learn the patterns and limits of rock failure in a supervised training manner based on the wellbore enlargement seen in calipers and image logs from nearby offset wells. Combing the FEM output with the ML algorithm leads to an accurate prediction of shear failure zones. The model is able to predict both the radial and circumferential distribution of enlargements at any mud weight and stress regime, which leads to a determination of the expected total volume of cavings. The model implementation is first validated through experimental data. The experimental data is based on true-triaxial tests of bored core samples. Next, a full dataset from offset wells is used to populate and train the model. The trained model is then used to produce estimations of risk-controlled stability mud weights for different drilling scenarios. The model results are compared against those produced by conventional methods. Finally, both the FEM-ML model and the conventional methods results are compared against the drilling experience of the offset wells. This methodology provides a more comprehensive and new solution to risk controlling wellbore instability. It relies on a novel process which learns rock failure from calipers and image logs.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.


Sign in / Sign up

Export Citation Format

Share Document