Successful CWD Campaign in Turnkey Project with Potential Utilisation for Well Construction Optimisation

2021 ◽  
Author(s):  
Louis Frederic Antoine Champain ◽  
Syed Zahoor Ullah ◽  
Alexey Ruzhnikov

Abstract Drilling and completion of the surface and intermediate sections in some fields is extremely challenging due to wellbore instability, especially accomplished with complete losses. Such circumstances lead to several time-consuming stuck pipe events, when existing standard ways of drilling did not lead to a permanent resolution of the problems. After exhausting the available conventional techniques without sustainable success, unorthodox solutions were required to justify the well delivery time and cost. Here comes the Casing While Drilling (CwD), being the most time and cost-effective solution to wellbore instability. CwD is introduced at full throttle aiming at the well cost reduction and well quality improvement. The implementation plan was divided in three phases. The first phase was a remedial solution to surface and intermediate sections drilling and casing off to prevent stuck pipe events and provide smooth well delivery performances. After successful implementation of CwD first phase, CwD was taken to the next level by shifting it from a mitigation to an optimization measure. Each step of CwD shoe-to-shoe operations was analysed to improve its performances: drill-out (D/O) of 18⅝-in shoe track with CwD, optimum drilling parameters per formation and CwD bit design. Implemented in 19 wells, CwD shoe-to-shoe performances have been brought up or even above standard rotary bottom hole assembly (BHA) benchmark. Planning for third phase is undergoing whereby CwD is aiming to optimize a well construction to reduce well delivery time, by combining surface and intermediate sections thus eliminating one casing string. Numerous challenges are being worked on including open hole (OH) isolation packer which conform to and seal with the borehole uneven surface. Special "for purpose built" expandable steel packer and stage tool have been manufactured and qualified for the specific application. A candidate well has been chosen and agreed for first trial. The key areas of improvement include, drilling and casing off the surface and intermediate sections while competing with standard rotary BHA performances and slimming down the well profile towards tremendous time and costs savings. This paper encompasses details of constructions of various wells with sufficient contingencies to combat any expected hole problems without compromising the well quality while keeping the well within budget and planned time. It also provides an analysis of the well trials that were executed during the implementation of first and second phases of CwD implementation and the captured lessons learnt which are being carried forward to the next phase. This paper provides the technique on how CwD can be used to help with three aspects of drilling, successfully mitigating holes problems by reducing OH exposure time and to eliminate drill string tripping and modifying conventional casing design to reduce well time and cost by eliminating one casing string.

Author(s):  
Nediljka Gaurina-Medjimurec ◽  
Borivoje Pasic

A stuck pipe is a common worldwide drilling problem in terms of time and financial cost. It causes significant increases in non-productive time and losses of millions of dollars each year in the petroleum industry. There are many factors affecting stuck pipe occurrence such as improper mud design, poor hole cleaning, differential pressure, key seating, balling up of bit, accumulation of cuttings, poor bottom hole assembly configuration, etc. The causes of a stuck pipe can be divided into two categories: (a) differential sticking and (b) mechanical sticking. Differential-pressure pipe sticking occurs when a portion of the drill string becomes embedded in a filter cake that forms on the wall of a permeable formation during drilling. Mechanical sticking is connected with key seating, formation-related wellbore instability, wellbore geometry (deviation and ledges), inadequate hole cleaning, junk in hole, collapsed casing, and cement related problems. Stuck pipe risk could be minimized by using available methodologies for stuck pipe prediction and avoiding based on available drilling parameters.


2021 ◽  
Author(s):  
Beau R Wright ◽  
Parvez Khan

Abstract Open hole Multistage Fracturing (MSF) systems have been deployed for treating open hole formations with multiple, high rate hydraulic fracturing stages while gaining efficiency during pumping operations unlike traditional plug-and-perf operations. One important challenge within the industry was availability of an open hole packer system that can overcome tough wellbore conditions during deployment and function as designed during the high rate high pressure stimulation operations. This paper will discuss the successful planning and deployment of one such system. For successful deployment of any open hole fracturing completion, one must first consider the environment that the system will be deployed into. Lateral length, open hole size, parent casing size and tubing stresses during fracturing and production all inclusively influence the need for a robust and reliable system. Other several important considerations to be deployed as a liner is the compatibility of the completion tools with the Liner deployment system, the robustness of being deployed into challenging open hole conditions where capability of high circulating rates and rotation become mandatory to get the bottom hole assembly (BHA) to its final setting depth. Last but not least, in order to achieve successful stimulation, each component of the system after overcoming all the deployment obstacles should function as designed withstanding treating differentials as high as 15kpsi, while simultaneously accommodating induced axial loads caused by these high-pressure treatments. The development and testing of individual components of the system was done keeping in mind wellbore instability and obstacles the completion will have to overcome during deployment. The field execution was planned with close collaboration with the operator and other key services that were involved for drilling the well. Real-time monitoring of the well allowed for simultaneous swift implementation of changes required on tool activation pressures, identification of hazards and mitigation plan to overcome challenges in order to execute the job successfully. It is worth mentioning that the successful deployment of this system represents the first use of additive manufacturing in high pressure, hydraulic set open hole packers. This technology allowed overcoming the barriers of challenges associated with deploying open hole completion in tight challenging formations that would otherwise have limited deployment capabilities.


2019 ◽  
Vol 20 (2) ◽  
pp. 51-59 ◽  
Author(s):  
Saifalden Y. Alssafar ◽  
Faleh H. M. Al-Mahdawi

Stick-slip is kind of vibration which associated with drilling operation in around the bottom hole assembly (BHA) due to the small clearance between drill string & the open hole and due to the eccentric rotating of string. This research presents results of specific experimental study that was run by using two types of drilling mud (Fresh water Bentonite & Polymer), with/without Nanoparticle size materials of MgO in various ratios and computes the rheological properties of mud for each concentration [Yield point, plastic viscosity, Av, PH, filter loss (30 min), filter cake, Mud Cake Friction, Friction Factor]. These results then were used to find a clear effects of Nanoparticle drilling mud rheology on stick - slip strength by several perspectives through a special “Torque and Drag” software which simulate the torque amount expected on BHA during drilling a vertical well in different conditions using real drilling string design that usually used in Iraqi oil fields. Thus to mitigate or to prevent stick–slip and cure the sequence events that could happen to both of drilling string and the well, i.e. Bit/BHA wear, pipe sticking, borehole instability and low Rate of penetration. Our study concluded that there are good reduction in the torque from (2031lb-ft) to (1823lb-ft) using polymer mud and torque reduction from (4000lb-ft) to (3450lb-ft) using Fresh Water Bentonite, these results do not include any breaking in the satisfactory range of other mud rheology.


2021 ◽  
Author(s):  
Efe Mulumba Ovwigho ◽  
Saleh Al Marri ◽  
Abdulaziz Al Hajri

Abstract On a Deep Gas Project in the Middle East, it is required to drill 3500 ft of 8-3/8" deviated section and land the well across highly interbedded and abrasive sandstone formations with compressive strength of 15 - 35 kpsi. While drilling this section, the drill string was constantly stalling and as such could not optimize drilling parameters. Due to the resulting low ROP, it was necessary to optimize the Drill string in order to enhance performance. Performed dynamic BHA modelling which showed current drill string was not optimized for drilling long curved sections. Simulation showed high buckling levels across the 4" drill pipe and not all the weight applied on surface was transmitted to the bit. The drilling torque, flowrate and standpipe pressures were limited by the 4" drill pipe. This impacted the ROP and overall drilling performance. Proposed to replace the 4" drill pipe with 5-1/2" drill pipe. Ran the simulations and the model predicted improved drill string stability, better transmission of weights to the bit and increased ROP. One well was assigned for the implementation. Ran the optimized BHA solution, able to apply the maximum surface weight on bit recommended by the bit manufacturer, while drilling did not observe string stalling or erratic torque. There was also low levels of shocks and vibrations and stick-slip. Doubled the on-bottom ROP while drilling this section with the same bit. Unlike wells drilled with the previous BHA, on this run, observed high BHA stability while drilling, hole was in great shape while POOH to the shoe after drilling the section, there were no tight spots recorded while tripping and this resulted in the elimination of the planned wiper trip. Decision taken to perform open hole logging operation on cable and subsequently run 7-in liner without performing a reaming trip. This BHA has been adopted on the Project and subsequent wells drilled with this single string showed similar performance. This solution has led to average savings of approximately 120 hours per well drilled subsequently on this field. This consist of 80 hours due to improved ROP, 10 hrs due to the elimination of wiper trip and a further 30 hrs from optimized logging operation on cable. In addition, wells are now delivered earlier due to this innovative solution. This paper will show how simple changes in drill string design can lead to huge savings in this current climate where there is a constant push for reduction in well times, well costs and improved well delivery. It will explain the step-by-step process that was followed prior to implementing this innovative solution.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4649
Author(s):  
İsmail Hakkı ÇAVDAR ◽  
Vahit FERYAD

One of the basic conditions for the successful implementation of energy demand-side management (EDM) in smart grids is the monitoring of different loads with an electrical load monitoring system. Energy and sustainability concerns present a multitude of issues that can be addressed using approaches of data mining and machine learning. However, resolving such problems due to the lack of publicly available datasets is cumbersome. In this study, we first designed an efficient energy disaggregation (ED) model and evaluated it on the basis of publicly available benchmark data from the Residential Energy Disaggregation Dataset (REDD), and then we aimed to advance ED research in smart grids using the Turkey Electrical Appliances Dataset (TEAD) containing household electricity usage data. In addition, the TEAD was evaluated using the proposed ED model tested with benchmark REDD data. The Internet of things (IoT) architecture with sensors and Node-Red software installations were established to collect data in the research. In the context of smart metering, a nonintrusive load monitoring (NILM) model was designed to classify household appliances according to TEAD data. A highly accurate supervised ED is introduced, which was designed to raise awareness to customers and generate feedback by demand without the need for smart sensors. It is also cost-effective, maintainable, and easy to install, it does not require much space, and it can be trained to monitor multiple devices. We propose an efficient BERT-NILM tuned by new adaptive gradient descent with exponential long-term memory (Adax), using a deep learning (DL) architecture based on bidirectional encoder representations from transformers (BERT). In this paper, an improved training function was designed specifically for tuning of NILM neural networks. We adapted the Adax optimization technique to the ED field and learned the sequence-to-sequence patterns. With the updated training function, BERT-NILM outperformed state-of-the-art adaptive moment estimation (Adam) optimization across various metrics on REDD datasets; lastly, we evaluated the TEAD dataset using BERT-NILM training.


2021 ◽  
Author(s):  
Sadia Masood ◽  
Zanaib Samad ◽  
Sarah Nadeem ◽  
Unzela Ghulam

BACKGROUND Telemedicine is utilized to deliver health care services remotely. Recently, it is well established due to pandemics because it can help the patients get required supportive care while minimizing their hospital exposure. In the future, it will continue to be used as a convenient, cost-effective patient care modality. OBJECTIVE The objectives were to identify physicians' challenges during teleconsultations and recognize the opportunities and strengths of this modality during the pandemic in a lower-income country. METHODS This cross-sectional study was conducted in a tertiary care hospital. The self-made questionnaire was filled through an online medium and responses were recorded on a five-point Likert scale. RESULTS A total of 83 participants were enrolled in this study. Most of them were Associate professors (29.8%), Assistant professors (26.2%), the ratio of the females was (52.4%) greater than males (,47.6%). 46 (54.8%) have laid between the age group 30-40 years. Pediatricians and senior instructors faced more difficulty in using telemedicine. The ones having clinical experience of fewer than 15 years or categorized in the age of 50-60 years faced challenges while using this modality. CONCLUSIONS During the current pandemic, situation telemedicine is the only glimmer of light to provide better quality health care. Telemedicine is an innovative strategy and it is important to understand the perception of physicians about it. Incomplete and inadequate infrastructure and attitude of the physicians is the main obstacle toward successful implementation of telemedicine. Successful installation and deployment of this technology require a complete grasp of the process among physicians.


2021 ◽  
Author(s):  
Nichnita Tortrakul ◽  
Chatwit Pochan ◽  
Nardthida Kananithikorn ◽  
Thanapong Siripan ◽  
Basil Ching ◽  
...  

Abstract This paper presents a method of reducing equivalent circulating density (ECD) while drilling using eccentric string reamers (ESR) with adjustable gage stabilizer (AGS) in Gulf of Thailand (GoT). Reduced ECD in slimhole is desirable when drilling depleted reservoirs as reduced borehole pressure can reduce or delay drilling fluid loss events. Delaying losses can allow well depth to be increased with the prospect of penetrating otherwise unrealized pay horizons and increasing reserves capture. Several methods of reducing ECD were considered but most solutions included changing drill string and/or casing design specifications with prohibitive cost. A low-cost, low operational-impact solution was needed. Hole-opening is a method of increasing annular clearance, but well delivery requirements of ~4.5 days per well necessitates a one-trip solution without introducing significant ROP reduction or negatively impact bottomhole assembly (BHA) walking tendencies. Further, the preferred solution must be compatible with a high temperature reservoir drilling environment and must not undermine drilling system operational reliability. A simple but controversial tool for hole opening is ESR. ESR’s are simple in that there are no moving parts or cutter blocks to shift, and operating cost is low. They are controversial due to uncertainty that the tool eccentricity and drilling dynamics will successfully open hole to the desired diameter. Given that the intent of this hole-opening application is limited to creating annular clearance for fluid, not mechanical clearance, the eccentric reamer solution was chosen for field trial and potential development. A tool design challenge was to create a reamer geometry with the desired enlargement ratio (6⅛-in. to 6⅞-in.) while drilling, and reliably drift surface equipment and casing without complications. The ESR design must efficiently drill-out cement and float equipment as well as heterogeneous shale/sand/mudstone interbedded formation layers without significant vibration. If successful, the enlarged hole diameter will increase annular clearance, reduce ECD, improve hole cleaning, and allow drilling depth to be increased to capture additional reserves The plug and play functionality of the ESR required no changes to the existing rig site procedures in handling and making up the tool. The ESR drifts the casing and drills cement and shoe track with normal parameters. The ESR is run with standard measurements-while-drilling (MWD)/logging-while-drilling (LWD) AGS BHA and is able to reduce ECD providing the opportunity to drill deeper and increase barrel of oil equivalent (BOE) per each wellbore. Performance analysis has shown no negative effect on drilling performance and BHA walking tendency. The novelty of this ESR application is its proven ability to assist in increasing reserves capture in highly depleted reservoirs. The ESR is performing very efficiently (high ROP) and reliability is outstanding. In this application, the ESR is a very cost-effective and viable solution for slimhole design.


Author(s):  
Mohammad Omar Abdullah ◽  
Voon Chun Yung ◽  
Audra Anak Jom ◽  
Alvin Yeo Wee ◽  
Martin Anyi ◽  
...  

The eBario project has won the eAsia Award and the Mondialogo Engineering Award in 2004 and 2005 respectively for it’s successful implementation of an Information and Telecommunications Technology Center (ICT) and solar renewable energy-incentive rural community project at the Bario Highland of Sarawak, East Malaysia, Borneo (http://www.unimas.my/ebario/). Although solar photovoltaic (PV) energy has been opted for power generation at the ICT Telecenter for the past five years, there is still a need to investigate the cost-effectiveness of the current energy setup as well as to conduct sustainability study taking into account factors such as system efficiency, weather, costs of fuel, operating costs, as well as to explore the feasibility of implementing alternative energy resources for the rural ICT Telecenter. Recent theoretical study conducted has shown that renewable combined power systems are more sustainable in terms of supplying electricity to the ICT Telecenter, and in a more cost-effective way compared to a standalone PV system which is subject to the cloud and the recent dense haze problems. For that purpose, two combined power systems are being put into consideration namely PV-Hydro and PV-Hydro-Fuel Cell, where the total simulated annualized cost for these two system configurations are US$10,847 and US$76,010 respectively as far as the present location is concerned. The PVHydro-Fuel Cell produces electrical energy at the amount of 3,577 kWh/yr while the annual energy consumption is 3,203 kWhr/yr. On the other hand, PV-Hydro produces 3,789 kWhr/yr of electricity annually load which consumes energy at 3,209 kWhr/yr. Results thus obtained has shown that the PVHydro scheme is expected to have advantages over the existing PV standalone system. Firstly, it is more cost-effective. Secondly, it provides the best outcomes for the local indigenous community and the natural highland environments both for now and the future. Thirdly, it also able to relate the continuity of both economic and social aspects of the local society as a whole. As the combined PV-Hydro system had been chosen, plus for completeness purposes, the present paper also discussed the custom design and construction of a small waterwheel breast-shot hydro-generator, suited to the local location and existing water energy resources. Energy saving design calculations and Sankey diagram showing the energy flows for the new combined system are also given herein. Finally, the energy system performance equations and the performance curves introduced in this study provide a new simple method of evaluating renewable energy systems.


Author(s):  
Ya. M. Kochkodan ◽  
A.I. Vasko

The article presents the main factors affecting the buckling when drilling vertical wells. The authors study analytically the effect of the weight on the bit and the force of the interaction of a drill string with a borehole wall using a uniform-sized arrangement of the bottom-hole assembly and the borehole wall which is located in a deviated wellbore when drilling in isotropic rocks in case the drilling direction coincides with the direction of the force acting on the bit. Differential equations of the elastic axis of the drill string are worked out. The solutions of these equations have given nondimensional dependences between the technological parameters. The authors have obtained the graphical dependences of the distance from the bit to the “drill string - borehole wall” contact point and the normal reaction of the bottom to the bit and the “drill string - borehole wall” clearance. The dependence for identifying the drilling anisotropy index in oblique beds is obtained. An interrelation between the anisotropy drilling index, the zenith angle, the bedding angle, the bottom-hole assembly, the borehole dimensions and the axial weight on the bit has been established. The authors have studied analytically the effect of the weight on the bit and the force of the “drill string - borehole wall” interaction, when installing the centralizer to the bottom-hole assembly. The differential equations of the elastic axis of the drill string with the centralizer in the bottom-hole assembly are obtained. It is established that with the increase in the axial weight on the bit and the “drill collars - borehole wall” clearance, the distance from the bit to the contact point of the borehole wall decreases; whereas with the increase of the deviation angle and the clearance, the pressure force of the column on the walls increases. It has also been established that the anisotropy drilling index reduces the distance from the bit to the point contact both in a slick BHA and in the bottom hole assembly with the centralizer. The presence of a centralizer in the bottom hole assembly increases the distance from the bit to the contact point between the string and the borehole wall, makes it possible to increase the weight on the bit without the risk of increasing a deviation angle.


Sign in / Sign up

Export Citation Format

Share Document