scholarly journals Starting to Unpick the Unique Air–Fuel Mixing Dynamics in the Recuperated Split Cycle Engine

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2148
Author(s):  
Simon A. Harvey ◽  
Konstantina Vogiatzaki ◽  
Guillaume de Sercey ◽  
William Redpath ◽  
Robert E. Morgan

In this work air fuel mixing and combustion dynamics in the recuperated split cycle engine (RSCE) are investigated through new theoretical analysis and complementary optical experiments of the flow field. First, a brief introduction to the basic working principles of the RSCE cycle will be presented, followed by recent test bed results relevant to pressure traces and soot emissions. These results prompted fundamental questioning of the air-fuel mixing and combustion dynamics taking place. Hypotheses of the mixing process are then presented, with differences to that of a conventional Diesel engine highlighted. Moreover, the links of the reduced emissions, air transfer processes and enhanced atomisation are explored. Initial experimental results and Schlieren images of the air flow through the poppet valves in a flow rig are reported. The Schlieren images display shockwave and Mach disk phenomena. Demonstrating supersonic air flow in the chamber is consistent with complementary CFD work. The results from the initial experiment alone are inconclusive to suggest which of the three suggested mixing mechanism hypotheses are dominating the air–fuel dynamics in the RSCE. However, one major conclusion of this work is the proof for the presence of shockwave phenomena which are atypical of conventional engines.

Author(s):  
Nicolás García Rosa ◽  
Adrien Thacker ◽  
Guillaume Dufour

In a fan stage under windmilling conditions, the stator operates under negative incidence, leading to flow separation, which may present an unsteady behaviour due to rotor/stator interactions. An experimental study of the unsteady flow through the fan stage of a bypass turbofan in windmilling is proposed, using hot-wire anemometry. Windmilling conditions are reproduced in a ground engine test bed by blowing a variable mass flow through a bypass turbofan in ambient conditions. Time-averaged profiles of flow coefficient are independent of the mass flow, demonstrating the similarity of velocity triangle. Turbulence intensity profiles reveal that the high levels of turbulence production due to local shear are also independent of the inlet flow. A spectral analysis confirms that the flow is dominated by the blade passing frequency, and that the separated regions downstream of the stator amplify the fluctuations locked to the BPF without adding any new frequency. Phase-locked averaging is used to capture the periodic wakes of the rotor blades at the rotor/stator interface. A spanwise behaviour typical of flows through windmilling fans is evidenced. Through the inner sections of the fan, rotor wakes are thin and weakly turbulent, and the turbulence level remains constant through the stage. The rotor wakes thicken and become more turbulent towards the fan tip, where flow separation occurs. Downstream of the stator, maximum levels of turbulence intensity are measured in the separated flow. Large periodical zones of low velocity and high turbulence intensity are observed in the outer parts of the separated stator wake, confirming the pulsating motion of the stator flow separation, locked at the blade passing frequency. Space-time diagrams show that the flow is chorochronic, and a 2 D non-linear harmonic simulation is able to capture the main interaction modes, however, the stator incidence distribution could be affected by 3 D effects.


Sadhana ◽  
2007 ◽  
Vol 32 (4) ◽  
pp. 347-363 ◽  
Author(s):  
S. R. Kale ◽  
S. V. Veeravalli ◽  
H. D. Punekar ◽  
M. M. Yelmule
Keyword(s):  
Air Flow ◽  

1981 ◽  
Vol 24 (4) ◽  
pp. 1010-1013 ◽  
Author(s):  
Pitam Chandra ◽  
Louis D. Albright ◽  
Gerald E. Wilson
Keyword(s):  
Air Flow ◽  

Author(s):  
Yangbo Deng ◽  
Fengmin Su ◽  
Chunji Yan

The solar energy converter in Concentrated Solar Power (CSP) system, applies the solid frame structure of the ceramic foams to receive the concentrated solar radiation, convert it into thermal energy, and heat the air flow through the ceramic foams by convection heat transfer. In this paper, first, the pressure drops in the studied ceramic foams were measured under all kinds of flow condition. Based on the experimental results, an empirical numerical model was built for the air flow through ceramic foams. Second, a 3-D numerical model was built, for the receiving and conversion of the solar energy in the ceramic foams of the solar energy converter. Third, applying two aforementioned numerical models, the numerical studies of the thermal performance were carried out, for the solar energy converter filled with the ceramic foams, and results show that the structure parameters of the ceramic foams, the effective reflective area and the solar radiation intensity of the solar concentrator, have direct impacts on the absorptivity and conversion efficiency of the solar energy in the solar energy converter. And the results of the numerical studies are found to be in reasonable agreement with the experimental measurements. This paper will provide a reference for the design and manufacture of the solar energy converter with the ceramic foams.


Sign in / Sign up

Export Citation Format

Share Document