scholarly journals Periodic flow structures in a turbofan fan stage in windmilling

Author(s):  
Nicolás García Rosa ◽  
Adrien Thacker ◽  
Guillaume Dufour

In a fan stage under windmilling conditions, the stator operates under negative incidence, leading to flow separation, which may present an unsteady behaviour due to rotor/stator interactions. An experimental study of the unsteady flow through the fan stage of a bypass turbofan in windmilling is proposed, using hot-wire anemometry. Windmilling conditions are reproduced in a ground engine test bed by blowing a variable mass flow through a bypass turbofan in ambient conditions. Time-averaged profiles of flow coefficient are independent of the mass flow, demonstrating the similarity of velocity triangle. Turbulence intensity profiles reveal that the high levels of turbulence production due to local shear are also independent of the inlet flow. A spectral analysis confirms that the flow is dominated by the blade passing frequency, and that the separated regions downstream of the stator amplify the fluctuations locked to the BPF without adding any new frequency. Phase-locked averaging is used to capture the periodic wakes of the rotor blades at the rotor/stator interface. A spanwise behaviour typical of flows through windmilling fans is evidenced. Through the inner sections of the fan, rotor wakes are thin and weakly turbulent, and the turbulence level remains constant through the stage. The rotor wakes thicken and become more turbulent towards the fan tip, where flow separation occurs. Downstream of the stator, maximum levels of turbulence intensity are measured in the separated flow. Large periodical zones of low velocity and high turbulence intensity are observed in the outer parts of the separated stator wake, confirming the pulsating motion of the stator flow separation, locked at the blade passing frequency. Space-time diagrams show that the flow is chorochronic, and a 2 D non-linear harmonic simulation is able to capture the main interaction modes, however, the stator incidence distribution could be affected by 3 D effects.

Author(s):  
Yingying Zhang ◽  
Shijie Zhang

This study proposes a 1D meanline program for the modeling of modern transonic axial multistage compressors. In this method, an improved blockage factor model is proposed. Work-done factor that varies with the compressor performance conditions is added in this program, and at the same time a notional blockage factor is kept. The coefficient of deviation angle model is tuned according to experimental data. In addition, two surge methods that originated from different sources are chosen to add in and compare with the new method called mass flow separation method. The salient issues presented here deal first with the construction of the compressor program. Three well-documented National Aerodynamics and Space Administration (NASA) axial transonic compressors are calculated, and the speedlines and aerodynamic parameters are compared with the experimental data to verify the reliability and robustness of the proposed method. Results show that consistent agreement can be obtained with such a performance prediction program. It was also apparent that the two common methods of surge prediction, which rely upon either stage or overall characteristic gradients, gave less agreement than the method called mass flow separation method.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Burak Karadag ◽  
Cem Kolbakir ◽  
Ahmet Selim Durna

Purpose This paper aims to investigate the effects of a dielectric barrier discharge (DBD) plasma actuator (PA) qualitatively on aerodynamic characteristics of a 3 D-printed NACA 4412 airfoil model. Design/methodology/approach Airflow visualization study was performed at a Reynolds number of 35,000 in a small-scale open-loop wind tunnel. The effect of plasma actuation on flow separation was compared for the DBD PA with four different electrode configurations at 10°, 20° and 30° angles of attack. Findings Plasma activation may delay the onset of flow separation up to 6° and decreases the boundary layer thickness. The effects of plasma diminish as the angle of attack increases. Streamwise electrode configuration, in which electric wind is produced in a direction perpendicular to the freestream, is more effective in the reattachment of the airflow compared to the spanwise electrode configuration, in which the electric wind and the free stream are in the same direction. Practical implications The Reynolds number is much smaller than that in cruise aircraft conditions; however, the results are promising for low-velocity subsonic airflows such as improving control capabilities of unmanned aerial vehicles. Originality/value Superior efficacy of spanwise-generated electric wind over streamwise-generated one is demonstrated at a very low Reynolds number. The results in the plasma aerodynamics literature can be reproduced using ultra-low-cost off-the-shelf components. This is important because high voltage power amplifiers that are frequently encountered in the literature may be prohibitively expensive especially for resource-limited university aerodynamics laboratories.


2019 ◽  
Vol 91 (8) ◽  
pp. 1077-1085 ◽  
Author(s):  
Filip Wasilczuk ◽  
Pawel Flaszynski ◽  
Piotr Kaczynski ◽  
Ryszard Szwaba ◽  
Piotr Doerffer ◽  
...  

Purpose The purpose of the study is to measure the mass flow in the flow through the labyrinth seal of the gas turbine and compare it to the results of numerical simulation. Moreover the capability of two turbulence models to reflect the phenomenon will be assessed. The studied case will later be used as a reference case for the new, original design of flow control method to limit the leakage flow through the labyrinth seal. Design/methodology/approach Experimental measurements were conducted, measuring the mass flow and the pressure in the model of the labyrinth seal. It was compared to the results of numerical simulation performed in ANSYS/Fluent commercial code for the same geometry. Findings The precise machining of parts was identified as crucial for obtaining correct results in the experiment. The model characteristics were documented, allowing for its future use as the reference case for testing the new labyrinth seal geometry. Experimentally validated numerical model of the flow in the labyrinth seal was developed. Research limitations/implications The research studies the basic case, future research on the case with a new labyrinth seal geometry is planned. Research is conducted on simplified case without rotation and the impact of the turbine main channel. Practical implications Importance of machining accuracy up to 0.01 mm was found to be important for measuring leakage in small gaps and decision making on the optimal configuration selection. Originality/value The research is an important step in the development of original modification of the labyrinth seal, resulting in leakage reduction, by serving as a reference case.


Author(s):  
Kenneth Van Treuren ◽  
Tyler Pharris ◽  
Olivia Hirst

The low-pressure turbine has become more important in the last few decades because of the increased emphasis on higher overall pressure and bypass ratios. The desire is to increase blade loading to reduce blade counts and stages in the low-pressure turbine of a gas turbine engine. Increased turbine inlet temperatures for newer cycles results in higher temperatures in the low-pressure turbine, especially the latter stages, where cooling technologies are not used. These higher temperatures lead to higher work from the turbine and this, combined with the high loadings, can lead to flow separation. Separation is more likely in engines operating at high altitudes and reduced throttle setting. At the high Reynolds numbers found at takeoff, the flow over a low-pressure turbine blade tends to stay attached. At lower blade Reynolds numbers (25,000 to 200,000), found during cruise at high altitudes, the flow on the suction surface of the low-pressure turbine blades is inclined to separate. This paper is a study on the flow characteristics of the L1A turbine blade at three low Reynolds numbers (60,000, 108,000, and 165,000) and 15 turbulence intensities (1.89% to 19.87%) in a steady flow cascade wind tunnel. With this data, it is possible to examine the impact of Reynolds number and turbulence intensity on the location of the initiation of flow separation, the flow separation zone, and the reattachment location. Quantifying the change in separated flow as a result of varying Reynolds numbers and turbulence intensities will help to characterize the low momentum flow environments in which the low-pressure turbine must operate and how this might impact the operation of the engine. Based on the data presented, it is possible to predict the location and size of the separation as a function of both the Reynolds number and upstream freestream turbulence intensity (FSTI). Being able to predict this flow behavior can lead to more effective blade designs using either passive or active flow control to reduce or eliminate flow separation.


1987 ◽  
Vol 109 (1) ◽  
pp. 94-101 ◽  
Author(s):  
M. R. Back ◽  
Y. I. Cho ◽  
D. W. Crawford ◽  
L. H. Back

A flow visualization study using selective dye injection and frame by frame analysis of a movie provided qualitative and quantitative data on the motion of marked fluid particles in a 60 degree artery branch model for simulation of physiological femoral artery flow. Physical flow features observed included jetting of the branch flow into the main lumen during the brief reverse flow period, flow separation along the main lumen wall during the near zero flow phase of diastole when the core flow was in the downstream direction, and inference of flow separation conditions along the wall opposite the branch later in systole at higher branch flow ratios. There were many similarities between dye particle motions in pulsatile flow and the comparative steady flow observations.


2005 ◽  
Vol 3 (1) ◽  
pp. 45-50 ◽  
Author(s):  
M. McGarry ◽  
L. Grega

The mass flow distribution and local flow structures that lead to areas of reactant starvation are explored for a small power large active area PEM fuel cell. A numerical model was created to examine the flow distribution for three different inlet profiles; blunt, partially developed, and fully developed. The different inlet profiles represent the various distances between the blower and the inlet to the fuel cell and the state of flow development. The partially and fully developed inlet profiles were found to have the largest percentage of cells that are deficient, 20% at a flow rate of 6.05 g/s. Three different inlet mass flow rates (stoichs) were also examined for each inlet profile. The largest percent of cells deficient in reactants is 27% and occurs at the highest flow rate of 9.1 g/s (3 stoichs) for the partially and fully developed turbulent profiles. In addition to the uneven flow distribution, flow separation occurs in the front four channels for the blunt inlet profile at all flow rates examined. These areas of flow separation lead to localized reactant deficient areas within a channel.


Author(s):  
J. W. Douglas ◽  
S.-M. Li ◽  
B. Song ◽  
W. F. Ng ◽  
Toyotaka Sonoda ◽  
...  

Very little published literature documents the effects of different freestream turbulence intensities on compressor flows at realistically high Reynolds numbers. This paper presents a study of these effects on a transonic, linear, compressor stator cascade. The cascade consisted of high turning stator airfoils that had the camber of 55 degrees. The effects of freestream turbulence intensities of approximately 0.1% (baseline) and 1.6% were examined. Inlet Mach numbers to the cascade were tested from 0.55 to 0.89. Reynolds numbers, based on the inlet conditions and blade chord, varied between 1.0–2.0×106. Inlet flow angles to the cascade ranged from a choking to a stall condition. For the baseline cases, at most positive incidence angles to the cascade, surface oil flow visualization and Schlieren pictures showed a significant flow separation on the suction surface of the blade. Under these conditions, the increase in freestream turbulence from 0.1% to 1.6% significantly reduced the flow losses of the cascade (by as much as 57% in some cases). In other test conditions where no evidence depicted flow separation on the blade, there were no measurable effects on the losses due to the increase in freestream turbulence intensity. In addition, the increase of freestream turbulence intensity also improved the effective operating range of the cascade significantly (e.g., by 46% or higher).


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Anna Avramenko ◽  
Alexey Frolov ◽  
Jari Hämäläinen

The presented research demonstrates the results of a series of numerical simulations of gas flow through a single-stage centrifugal compressor with a vaneless diffuser. Numerical results were validated with experiments consisting of eight regimes with different mass flow rates. The steady-state and unsteady simulations were done in ANSYS FLUENT 13.0 and NUMECA FINE/TURBO 8.9.1 for one-period geometry due to periodicity of the problem. First-order discretization is insufficient due to strong dissipation effects. Results obtained with second-order discretization agree with the experiments for the steady-state case in the region of high mass flow rates. In the area of low mass flow rates, nonstationary effects significantly influence the flow leading stationary model to poor prediction. Therefore, the unsteady simulations were performed in the region of low mass flow rates. Results of calculation were compared with experimental data. The numerical simulation method in this paper can be used to predict compressor performance.


2010 ◽  
Vol 54 (04) ◽  
pp. 268-280
Author(s):  
Dipti P. Mishra ◽  
Sukanta K. Dash ◽  
P. Anil Kishan

This paper discusses the computation of air entrainment in to the louvers of a cylindrical funnel as a result of a high-velocity isothermal air jet placed inside the funnel having different lengths of protrusion and different funnel diameters. The experimental setup consists of a cylindrical Perspex tube with circular louvers cut around it. The flow through the nozzle is measured with a rotameter, and the velocity at the cylinder outlet is measured with a hot wire anemometer. The numerical simulation is carried out by solving the conservation equations of mass and momentum for the funnel with a surrounding computational domain so that the suction can take place at the louver entry. The resulting equations have been solved numerically using finite volume technique in an unstructured grid employing eddy viscosity based two-equation k-e turbulence model of Fluent 6.3. It has been found from the experiment and the CFD computation that there exists an optimum funnel diameter for which the mass ingress into the funnel is highest, and also there exists an optimum protrusion length of the nozzle that entrains maximum air flow into the funnel. For isothermal air suction the mass ingress into the funnel does not depend on the inclination of the funnel, whereas for low velocity and high temperature of the nozzle fluid the mass ingress in to the funnel depends on the inclination of the funnel. After a critical nozzle velocity (Gr/Re2 < 0.5), the mass ingress into the funnel does not again depend on the inclination of the funnel. An approximate relation for the entrance length of a sucking pipe has also been developed from the present CFD solution. The original contribution of the paper is the setting of a computational methodology for computing various conditions of suction flow in to a funnel while having the numerical confidence by comparing the CFD result with a small-scale experimental measurement in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document