scholarly journals Decentral Energy Generation Potential of Anaerobic Digestion of Black Water and Kitchen Refuse for Eco-District Planning

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2948
Author(s):  
Soufia Mohammadi ◽  
Pilar Monsalvete Álvarez de Uribarri ◽  
Ursula Eicker

Biogas technology is an important alternative energy source worldwide. Blackwater and kitchen refuse represent ideal waste streams for bioenergy recovery through anaerobic co-digestion. Modeling of the biokinetics of anaerobic digestion on several aspects, such as microbial activity, substrate degradation, and methane production, from co-digestion of black water (BW) and kitchen refuse (KR) was the objective of this research. A mathematical model was developed towards a simulation based on mass balances on biomass, the organic substrate, and biogas. The model was implemented in INSEL and experimental data from the literature were used for model validation. The study shows that the simulation results fit well with the experimental data. The energy consumption and generation potential of anaerobic co-digestion of BW and KR were calculated to investigate if the produced biogas could supply the digester’s energy demand. This study can be used to pre-design anaerobic digestion systems in eco-districts.

2020 ◽  
Vol 12 (18) ◽  
pp. 7492
Author(s):  
Rahiel Hagos ◽  
Abdulwahab Saliu Shaibu ◽  
Lei Zhang ◽  
Xu Cai ◽  
Jianli Liang ◽  
...  

Energy and food source crop demand claims to be vulnerable to climate change impacts. The new and orphan crops, which in the past have received only limited research attention but are sustainable to environmental systems, are needed. In this review, we summarize the available literature about Ethiopian mustard as an alternative energy source and its sustainable economic importance as a new promising Brassicacea crop for new opportunities in the face of producing sustainable environment and energy development. Ethiopian mustard has many advantages and can be adopted to replace crops that are susceptible to adverse environmental conditions. Ethiopian mustard is becoming a new promising Brassicaceae crop with the current global energy demand increases. However, researchers have only focused on energy source production which has resulted in developing high erucic acid varieties. This results partly in limited studies on developing Ethiopian mustard edible oil varieties. The adoption and scaling-up of this promising crop as an oilseed crop in developing countries and Mediterranean conditions can sustain the impact of climate change with the demand for food and energy debate concepts. Indeed, further agronomic, quality and genomic studies on oilseed nutritional traits for efficient breeding and utilization are needed.


Author(s):  
Samson N. Ugwu ◽  
Christopher C. Enweremadu

Abstract Biogas production is an anaerobic waste-to-energy technology, involving waste degradation and stabilization. The sustainable, cheap and clean nature of biogas has led to the unprecedented rise in its use as an alternative energy source. Due to the increased interests, availability of conventional biodegradable organics has shrunk enormously over the years, necessitating the aggressive search for novel energy crops and substrate enhancement options. These novel options ensure feedstock security, optimize conventional biomass feedstocks, improve feedstock degradability and increase in biogas yield. Low biodegradability of most lignocellulosic wastes like okra waste, limits their use as a viable substrate in the anaerobic digestion process. Over the years, several elements, compounds and nanoparticles have been applied to anaerobic digestion systems as supplementary nutrients with a view to enhancing substrate degradation. Such supplements like iron-based additives have gained prominence in anaerobic digestion processes of wastes, owing to their electron donation abilities, promotion of solubilization, hydrolysis, acidification, and hydrogenotrophic methanogenesis. In a bid to enhance substrate degradation, reduce inhibitions, increase both biogas yield and methane content, a comparative study on the influence of four different iron-based additives (nanoscale zero-valent iron (nZVI), Polypyrrole-magnetic nanocomposite (Ppy-Fe3O4), Iron powder (Fe) and Hematite (Fe2O3)) on the entire anaerobic digestion of okra waste was done. Previously determined optimum doses, 20 mg, 20 mg, 750 mg, 750 mg and 0 respectively for nZVI, Ppy-Fe3O4, Fe, Fe2O3 and control were added to the bioreactors containing okra wastes in a 500 mL biomethane potential bioreactors under mesophilic temperature (37°C) for 20 days. The cumulative volumes of the biogas from different reactors were recorded and analyzed. The morphological deformation, structures and analysis of the undigested substrate, digestates of substrate supplemented with iron-based additives and the control were evaluated with scanning electron microscopy (SEM). Artificial neural network (ANN) model and the modified Gompertz model were validated with the experimental data. The ANN model showed better goodness of fit and was better correlated with the experimental data. Experimental data were subjected to analysis of variance at a 95% confidence level. Results showed that Ppy-Fe3O4 additives better enhanced both biogas yield and methane contents significantly when compared to the control. It was also observed that all iron-additive supplemented processes were more degraded when compared with the control.


2018 ◽  
Vol 14 ◽  
pp. 485-491
Author(s):  
Abubakar Aliyu Umar ◽  
Khaidzir Hamzah ◽  
Muneer Aziz Muhammad Saleh ◽  
Nasiru Isa Fagge ◽  
Muhammad Rawi Muhammad ◽  
...  

The commensurate increase in the price of kerosene and gas created fear in the minds of many Nigerians, which force them to think of the future and show much concern about the security of energy needed for survival and economic sustainability. The growing demand in energy coupled with the population increase places more demand on agricultural biomass such as sawdust to be used for heating processes. A large quantity of sawdust is produced on daily basis in most Nigerian cities and can be utilize for domestic heating. The potential of this biomass to serve as an alternative energy source is explored in this work. About 1500 gram of sieved sawdust mixed with 150 gram of starch binder were prepared into a moderate size briquette. Study on combustion performances was conducted using constructed sawdust stove. Analysis of the experimental data indicates that the sawdust stove performances in terms of combustion rate and efficiency are comparable to that of kerosene stove and surpass ordinary fire-wood stoves. The advantage of using sawdust for heating applications are its domestic origin and help in waste management.


2018 ◽  
Vol 4 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Olena Savchenko ◽  
◽  
Vasyl Zhelykh ◽  
Yurii Yurkevych ◽  
Khrystyna Kozak ◽  
...  

2016 ◽  
Vol 287 ◽  
pp. 329-336 ◽  
Author(s):  
Heng Li ◽  
Fen Tan ◽  
Lanting Ke ◽  
Dong Xia ◽  
Yuanpeng Wang ◽  
...  

Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2021 ◽  
Vol 13 (12) ◽  
pp. 6894
Author(s):  
Shakira R. Hobbs ◽  
Tyler M. Harris ◽  
William J. Barr ◽  
Amy E. Landis

The environmental impacts of five waste management scenarios for polylactic acid (PLA)-based bioplastics and food waste were quantified using life cycle assessment. Laboratory experiments have demonstrated the potential for a pretreatment process to accelerate the degradation of bioplastics and were modeled in two of the five scenarios assessed. The five scenarios analyzed in this study were: (1a) Anaerobic digestion (1b) Anaerobic digestion with pretreatment; (2a) Compost; (2a) Compost with pretreatment; (3) Landfill. Results suggested that food waste and pretreated bioplastics disposed of with an anaerobic digester offers life cycle and environmental net total benefits (environmental advantages/offsets) in several areas: ecotoxicity (−81.38 CTUe), eutrophication (0 kg N eq), cumulative energy demand (−1.79 MJ), global warming potential (0.19 kg CO2), and human health non-carcinogenic (−2.52 CTuh). Normalized results across all impact categories show that anaerobically digesting food waste and bioplastics offer the most offsets for ecotoxicity, eutrophication, cumulative energy demand and non-carcinogenic. Implications from this study can lead to nutrient and energy recovery from an anaerobic digester that can diversify the types of fertilizers and decrease landfill waste while decreasing dependency on non-renewable technologies. Thus, using anaerobic digestion to manage bioplastics and food waste should be further explored as a viable and sustainable solution for waste management.


Sign in / Sign up

Export Citation Format

Share Document