scholarly journals Land-Use Change and Bioenergy Production: Soil Consumption and Characterization of Anaerobic Digestion Plants

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4001
Author(s):  
Giovanni Ferrari ◽  
Federico Ioverno ◽  
Marco Sozzi ◽  
Francesco Marinello ◽  
Andrea Pezzuolo

The exploitation of bioenergy plays a key role in the process of decarbonising the economic system. Huge efforts have been made to develop bioenergy and other renewable energy systems, but it is necessary to investigate the costs and problems associated with these technologies. Soil consumption and, in particular, soil sealing are some of these aspects that should be carefully evaluated. Agricultural biogas plants (ABPs) often remove areas dedicated to agricultural activities and require broad paved areas for the associated facilities. This study aimed to (i) assess the surfaces destined to become facilities and buildings in ABPs, (ii) correlate these surfaces with each other and to the installed powers of the plants, and (iii) estimate the consumption of soil in bioenergy applications in Italy. Two hundred ABPs were sampled from an overall population of 1939, and the extents of the facilities were measured by aerial and satellite observations. An ABP with an installed power of 1000 kW covers an average surface area of up to 23,576 m2. Most of this surface, 97.9%, is obtained from previously cultivated areas. The ABP analysis proved that 24.7 m2 of surface area produces 1 kW of power by bioenergy. The obtained model estimated a total consumption of soil by ABPs in Italy of 31,761,235 m2. This research can support stakeholders in cost-benefit analyses to design energy systems based on renewable energy sources.

2020 ◽  
Vol 22 (1-2) ◽  
pp. 131-136
Author(s):  
Srđan Bošković

The goal of this paper is to introduce the market modeling tool Antares and to point out possibilities of its utilisation in cost-benefit analysis of energy projects. Market modeling of power systems represents a detailed modeling of generating units, consumption and cross-border connections with neighboring systems in order to find economically optimal dispatching of power plants by which the total consumption will be satisfied. In this paper, two power systems connected by cross-border transmission lines will be modeled (in one of them there is a large amount of installed capacity of renewable energy sources). The benefits of reinforcing cross-border connection embodied in avoiding curtailment of available renewable energy due to low energy consumption and lack of energy storage systems will be analyzed, along with corresponding benefits of reduced CO2 emissions due to the ability to transfer green energy into neighboring power systems through increased cross-border capacity.


2020 ◽  
Vol 2 (7) ◽  
pp. 171-184
Author(s):  
Z. U. SAIPOV ◽  
◽  
G. A. ARIFDZHANOV ◽  

Energy is one of the main pillars of the state’s economy, which is currently facing serious problems due to depletion of mineral energy resources and the threatening environment. As a result, presently around the world there is a rapid growth and development of energy-efficient technologies and the use of renewable energy sources (RES), providing an increase in energy resources, as well as environmental and social effects. One of the most relevant and promising areas of renewable energy development is the disposal and processing of organic waste in biogas plants, and this is particularly relevant in agricultural regions. In this regard, this paper considers the state and prospects for the development of bioenergy in agricultural regions of Uzbekistan, where half of the population of the republic lives. The potential of organic waste from livestock and poultry farming of the agricultural sector was determined, and it was revealed that the use of biogas plants for the disposal of manure and litter is clearly a profitable production and requires close attention from rural producers. The introduction of biogas technologies for the bulk of agricultural producers is an urgent task, that will ensure not only a solution to the waste problem, but it will also provide a solution to energy, agricultural, environmental and social problems in rural regions of the republic.


Author(s):  
Jishu Mary Gomez ◽  
Prabhakar Karthikeyan Shanmugam

Background & Objectives: The global power system is in a state of continuous evolution, incorporating more and more renewable energy systems. The converter-based systems are void of inherent inertia control behavior and are unable to curb minor frequency deviations. The traditional power system, on the other hand, is made up majorly of synchronous generators that have their inertia and governor response for frequency control. For improved inertial and primary frequency response, the existing frequency control methods need to be modified and an additional power reserve is to be maintained mandatorily for this purpose. Energy self-sufficient renewable distributed generator systems can be made possible through optimum active power control techniques. Also, when major global blackouts were analyzed for causes, solutions, and precautions, load shedding techniques were found to be a useful tool to prevent frequency collapse due to power imbalances. The pre-existing load shedding techniques were designed for traditional power systems and were tuned to eliminate low inertia generators as the first step to system stability restoration. To incorporate emerging energy possibilities, the changes in the mixed power system must be addressed and new frequency control capabilities of these systems must be researched. Discussion: In this paper, the power reserve control schemes that enable frequency regulation in the widely incorporated solar photovoltaic and wind turbine generating systems are discussed. Techniques for Under Frequency Load Shedding (UFLS) that can be effectively implemented in renewable energy enabled micro-grid environment for frequency regulation are also briefly discussed. The paper intends to study frequency control schemes and technologies that promote the development of self- sustaining micro-grids. Conclusion: The area of renewable energy research is fast emerging with immense scope for future developments. The comprehensive literature study confirms the possibilities of frequency and inertia response enhancement through optimum energy conservation and control of distributed energy systems.


2015 ◽  
Vol 15 (1) ◽  
pp. 22-33 ◽  
Author(s):  
Saravanan Dhanushkodi ◽  
Vincent H. Wilson ◽  
Kumarasamy Sudhakar

Abstract Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.


Author(s):  
Radian Belu

The use of renewable energy sources is increasingly being pursued as a supplemental and an alternative to traditional energy generation. Several distributed energy systems are expected to a have a significant impact on the energy industry in the near future. As such, the renewable energy systems are presently undergoing a rapid change in technology and use. Such a feature is enabled clearly by power electronics. Both the solar-thermal and photovoltaic (PV) technologies have an almost exponential growth in installed capacity and applications. Both of them contribute to the overall grid control and power electronics research and advancement. Among the renewable energy systems, photovoltaic (PV) systems are the ones that make use of an extended scale of the advanced power electronics technologies. The specification of a power electronics interface is subject to the requirements related not only to the renewable energy source itself but also to its effects on the operations of the systems on which it is connected, especially the ones where these intermittent energy sources constitute a significant part of the total system capacity. Power electronics can also play a significant role in enhancing the performance and efficiency of PV systems. Furthermore, the use of appropriate power electronics enables solar generated electricity to be integrated into power grid. Aside from improving the quality of solar panels themselves, power electronics can provide another means of improving energy efficiency in PV and solar-thermal energy systems.


2015 ◽  
pp. 2016-2072
Author(s):  
Radian Belu

The use of renewable energy sources is increasingly being pursued as a supplemental and an alternative to traditional energy generation. Several distributed energy systems are expected to a have a significant impact on the energy industry in the near future. As such, the renewable energy systems are presently undergoing a rapid change in technology and use. Such a feature is enabled clearly by power electronics. Both the solar-thermal and photovoltaic (PV) technologies have an almost exponential growth in installed capacity and applications. Both of them contribute to the overall grid control and power electronics research and advancement. Among the renewable energy systems, photovoltaic (PV) systems are the ones that make use of an extended scale of the advanced power electronics technologies. The specification of a power electronics interface is subject to the requirements related not only to the renewable energy source itself but also to its effects on the operations of the systems on which it is connected, especially the ones where these intermittent energy sources constitute a significant part of the total system capacity. Power electronics can also play a significant role in enhancing the performance and efficiency of PV systems. Furthermore, the use of appropriate power electronics enables solar generated electricity to be integrated into power grid. Aside from improving the quality of solar panels themselves, power electronics can provide another means of improving energy efficiency in PV and solar-thermal energy systems.


Author(s):  
Igor Tyukhov ◽  
Hegazy Rezk ◽  
Pandian Vasant

This chapter is devoted to main tendencies of optimization in photovoltaic (PV) engineering showing the main trends in modern energy transition - the changes in the composition (structure) of primary energy supply, the gradual shift from a traditional (mainly based on fossil fuels) energy to a new stage based on renewable energy systems from history to current stage and to future. The concrete examples (case studies) of optimization PV systems in different concepts of using from power electronics (particularly maximum power point tracking optimization) to implementing geographic information system (GIS) are considered. The chapter shows the gradual shifting optimization from specific quite narrow areas to the new stages of optimization of the very complex energy systems (actually smart grids) based on photovoltaics and also other renewable energy sources and GIS.


Author(s):  
Marwa Mallek ◽  
Jalel Euchi ◽  
Yacin Jerbi

Hybrid energy systems (HESs) are an excellent solution for electrification of remote rural areas where the grid extension is difficult or not economical. Usually, HES generally integrate one or several renewable energy sources such as solar, wind, hydropower, and geothermal with fossil fuel powered diesel/petrol generator to provide electric power where the electricity is either fed directly into the grid or to batteries for energy storage. This chapter presents a review on the solution approaches for determining the HES systems based on various objective functions (e.g. economic, social, technical, environmental and health impact). In order to take account of environmental and health impacts from energy systems, several energy optimization model was developed for minimizing pollution and maximizing the production of renewable energy.


Sign in / Sign up

Export Citation Format

Share Document