scholarly journals Solar Power: Stellar Profit or Astronomic Cost? A Case Study of Photovoltaic Installations under Poland’s National Prosumer Policy in 2016–2020

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4233
Author(s):  
Anna Szeląg-Sikora ◽  
Jakub Sikora ◽  
Marcin Niemiec ◽  
Zofia Gródek-Szostak ◽  
Marcin Suder ◽  
...  

In Poland, the development of photovoltaic (PV) installations is an important element in the development of the Renewable Energy Sources (RES) sector and supports the prosumer power industry. The purpose of the article is to present a case study of the PROSUMENT program. It analyzes the data available to date on the development of the PV market in Poland. Apart from the costs of installing the PV systems, the article analyzes the profitability of investment for different micro-power installation capacities. A calculation for micro-power installations subsidized under the PROSUMENT program for various PV capacities is presented, along with the actual amount of the subsidy. The adopted calculation methodology is a comparative verification analysis of the investment cost estimate for a for the two studied PV facilities, i.e., Micro-power installation 1 and Micro-power installation 2. The building’s annual energy demand was adopted at the same level for both examples, with fixed active energy and distribution fees. The study includes a cost estimate for installing the PV systems and the profitability of the investments for various micro-power installation capacities. The analysis of the subsidy under the PROSUMENT program demonstrated that, in the analyzed period of 2016–2020, the best results were achieved by investments with a capacity of 10 kWp. In terms of the net subsidy value, the best results ranged between 27.20 and 19.10% of the total investment costs. Development of the Polish prosumer power market requires building public awareness of prosumer power production as an opportunity for the growth of the Polish economy.

Author(s):  
Mohammed Shafique Malik

Project Cost estimation is carried out for making investment decisions. Cost estimation is carried out during different phases of the project. Contingency in cost estimation is an important factor before releasing final cost estimate for formal approval of the project by senior management. Major Petrochemical companies use risk-based contingency calculation instead of following a standard practice of adding a certain fixed percentage to the final project cost estimate. In this chapter, cost contingency calculation methodology has been elaborated by conducting case study of a sample project. The methodology described here uses famous tool of Monte Carlo for simulation. It is pragmatic approach to calculate required cost contingency in the project cost estimate, based upon the particular project risks as compared to simply following rule of adding fixed percentage of the estimate as cost contingency in overall project cost estimate.


SIMULATION ◽  
2019 ◽  
Vol 95 (10) ◽  
pp. 931-939 ◽  
Author(s):  
Mohammad Hossein Shams ◽  
Mohsen Kia ◽  
Alireza Heidari ◽  
Daming Zhang

Regarding the significant potential of solar energy in Iran, implementation of optimally designed photovoltaic (PV) systems can be effective. Hence, this study proposes two objective functions: first, the maximum possible output energy for a given area and, second, the minimum area receiving a given yearly energy from PV fixed collectors in a solar field, both of which are calculated. In addition, the shading and masking effects are considered in the calculations. A modified particle swarm optimization (MPSO) algorithm is used to solve the optimization problem. The case study of this article is a shopping center in Isfahan-Iran (latitude 32.5°N) with the minimum yearly energy demand of 171 MWh and the 5000 m2 roof area. To evaluate the yearly energy, the calculated hourly radiation approach is applied to the case study. The results show that the maximum possible generated energy is 881 MWh/year for the given area. In addition, to provide the minimum demand, 720 m2 area of roof is needed. To verify the effectiveness of the proposed MPSO, the results are compared with those of obtained by the relevant commercial software.


2019 ◽  
Vol 11 (20) ◽  
pp. 5774 ◽  
Author(s):  
Karim ◽  
Karim ◽  
Islam ◽  
Muhammad-Sukki ◽  
Bani ◽  
...  

Bangladesh’s constant growth with an annual 6% plus Gross Domestic Product (GDP) for more than the last two decades and achievements in other socio-economic metrics in recent times is impressive and recognized by various global authoritative bodies. The extent of overwhelming economic ventures in the private sector coupled with the commitments of the government clearly demonstrates the transformation of the country from a primarily agro-based economy to one influenced by the manufacturing and service sectors. Bangladesh is fortunate to have fossil fuel reserves on a limited scale, though these are not enough to run the ongoing massive scale development activities, both in private and public sectors. Thus, the constant and uninterrupted supply of energy at an affordable price remains a serious concern for the successive governments. Therefore, this issue of supply of constant energy has turned to be an important part in the national development agenda. Besides, the country is one of the worst victim nations of the devastating effects of global warming and climate change. As Bangladesh is geographically located in a favorable place in the world map with the availability of plenty of renewable energy sources (RES), the policymakers started to take initiatives leading to exploiting these sources to meet the energy demand of the country. There are both prospects and administrative, legal, technological, socio-cultural and environmental challenges. To address these challenges, it requires comprehensive policy initiatives. A good number of technical and scientific research containing findings and recommendations are available. This paper, which is based on adopting a qualitative research methodology where the contents of secondary sources were analyzed, is an initial attempt to highlight the renewable energy developments in Bangladesh, and subsequently, to evaluate the relevant legal and policy initiatives in the light of international best practices. We advance several recommendations that the stakeholders can consider exploiting RES effectively to attain inclusive, equitable and sustainable development in Bangladesh. These include, inter alia: (1) Enhancing government participation to lead the development of renewable energy (RE); (2) ensuring localization of RE technology; (3) reducing the expenses of energy generation through RES and providing assistance in initial investments; (4) introducing comprehensive legal and regulatory policy for the development of RE industry in Bangladesh; and (5) conducting effective public awareness.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1188 ◽  
Author(s):  
Paolo Taddeo ◽  
Alba Colet ◽  
Rafael E. Carrillo ◽  
Lluc Casals Canals ◽  
Baptiste Schubnel ◽  
...  

The electricity sector foresees a significant change in the way energy is generated and distributed in the coming years. With the increasing penetration of renewable energy sources, smart algorithms can determine the difference about how and when energy is produced or consumed by residential districts. However, managing and implementing energy demand response, in particular energy flexibility activations, in real case studies still presents issues to be solved. This study, within the framework of the European project “SABINA H2020”, addresses the development of a multi-level optimization algorithm that has been tested in a semi-virtual real-time configuration. Results from a two-day test show the potential of building’s flexibility and highlight its complexity. Results show how the first level algorithm goal to reduce the energy injected to the grid is accomplished as well as the energy consumption shift from nighttime to daytime hours. As conclusion, the study demonstrates the feasibility of such kind of configurations and puts the basis for real test site implementation.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3795 ◽  
Author(s):  
Julia Vopava ◽  
Ulrich Bergmann ◽  
Thomas Kienberger

To reduce CO2 emissions, it is necessary to cover the increasing energy demand of e-mobility with renewable energy sources. Therefore, the influence of increasing e-mobility and synergy effects between e-mobility and renewable energy sources need to be investigated. The case study presented here shows results from the analysis of grid-side and energetic synergy effects between e-mobility charged only at work and photovoltaic (PV) potentials. The basis of the grid study is a simplified cell-based grid model. Following the determination of synthetic charging profiles for e-mobility, PV potential profiles, load and production profiles, we perform load flow calculations for different scenarios and a simulation period of one year using the grid model. After the grid study, the energy analyses are carried out using four key performance indicators. The grid study shows that line overloads caused by PV production are only reduced and not avoided by increasing e-mobility and vice versa. The increase in the power peak of e-mobility, by shifting the charging processes into the peak of PV potentials, leads to a reduction of the production surplus in summer, while in winter the line utilisation increases. By modelling PV potentials on real irradiation and temperature data, the investigation of key performance indicators can identify not only seasonal fluctuations but also daily fluctuations.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1256
Author(s):  
Peter Lichtenwoehrer ◽  
Lore Abart-Heriszt ◽  
Florian Kretschmer ◽  
Franz Suppan ◽  
Gernot Stoeglehner ◽  
...  

In light of global warming and the energy turn, sector coupling has gained increasing interest in recent years, from both the scientific community and politics. In the following article it is hypothesized that efficient multifaceted sector coupling solutions depend on detailed spatial and temporal characteristics of energy demand and supply. Hence, spatiotemporal modelling is used as a methodology of integrated spatial and energy planning, in order to determine favourable sector coupling strategies at the local level. A case study evaluation was carried out for both central and decentral renewable energy sources. Considering the high temporal resolutions of energy demand and supply, the results revealed a feasible operation of a district heating network in the central areas of the case study municipalities. Additionally, building integrated solar energy technologies are capable of providing large amount of excess energy that could serve other demand sectors, such as the mobility sector, or could be used for Power-to-X solutions. It is suggested that sector coupling strategies require spatial considerations and high temporal comparisons, in order to be reasonably integrated in spatial and urban planning.


2021 ◽  
Vol 11 (2) ◽  
pp. 6956-6964
Author(s):  
H. Camur ◽  
Y. Kassem ◽  
E. Alessi

Lebanon suffers from daily electricity shortages. The country has paid much attention to renewable energy sources, particularly solar, to gradually replace conventional energy. Installing a photovoltaic (PV) system becomes increasingly attractive for residential consumers due to the rising electricity tariff rates while it reduces the dependency on domestic power generators. No known study has dealt with the investigation of potential grid-connected rooftop PV systems with various sun-tracking modes and PV technologies in Nahr El-Bared, Lebanon. Consequently, the main objective of the current paper is to investigate the feasibility of a 5kW grid-connected PV system of various technologies (mono-crystalline silicon and poly-crystalline silicon) and sun-tracking modes including fixed tilt and 2-axis systems for rooftop households in Lebanon. The Nahr El-Bared camp was the case study was of the paper. RETScreen Expert software was used to evaluate the techno-economic performance of the proposed systems. The results show that the annual electrical energy from a fixed 5kW PV panel tilted at an optimal angle ranged from 8564.47kWh to 8776.81kWh, while the annual electrical energy from the PV tracking system was within the range of 11511.67-12100.92kWh. This amount of energy output would contribute significantly to reduce the energy shortage in the country. A typical household was selected to establish a load profile and load supply during both grid availability and outage periods. The highest energy consumption that can be covered by the PV systems was recorded during the spring and summer seasons. Also, the average energy production cost ranged from 0.0239 to 0.0243$/kWh for all the proposed systems. It was concluded that a 5kW grid-connected rooftop PV system could be economically justifiable. Finally, this study tried to increase the awareness about utilizing PV sun-tracking systems and the feasibility of small-scale grid-connected rooftop PV systems in the selected regions. The results of this research can help investors in the energy and building sectors.


2020 ◽  
Vol 12 (3) ◽  
pp. 1274 ◽  
Author(s):  
Eduardo Quiles ◽  
Carlos Roldán-Blay ◽  
Guillermo Escrivá-Escrivá ◽  
Carlos Roldán-Porta

In rural areas or in isolated communities in developing countries it is increasingly common to install micro-renewable sources, such as photovoltaic (PV) systems, by residential consumers without access to the utility distribution network. The reliability of the supply provided by these stand-alone generators is a key issue when designing the PV system. The proper system sizing for a minimum level of reliability avoids unacceptable continuity of supply (undersized system) and unnecessary costs (oversized system). This paper presents a method for the accurate sizing of stand-alone photovoltaic (SAPV) residential generation systems for a pre-established reliability level. The proposed method is based on the application of a sequential random Monte Carlo simulation to the system model. Uncertainties of solar radiation, energy demand, and component failures are simultaneously considered. The results of the case study facilitate the sizing of the main energy elements (solar panels and battery) depending on the required level of reliability, taking into account the uncertainties that affect this type of facility. The analysis carried out demonstrates that deterministic designs of SAPV systems based on average demand and radiation values or the average number of consecutive cloudy days can lead to inadequate levels of continuity of supply.


Author(s):  
Molla Asmare ◽  
Mustafa Ilbas

Nowadays, the most decisive challenges we are fronting are perfectly clean energy making for equitable and sustainable modern energy access, and battling the emerging alteration of the climate. This is because, carbon-rich fuels are the fundamental supply of utilized energy for strengthening human society, and it will be sustained in the near future. In connection with this, electrochemical technologies are an emerging and domineering tool for efficiently transforming the existing scarce fossil fuels and renewable energy sources into electric power with a trivial environmental impact. Compared with conventional power generation technologies, SOFC that operate at high temperature is emerging as a frontrunner to convert the fuels chemical energy into electric power and permits the deployment of varieties of fuels with negligible ecological destructions. According to this critical review, direct ammonia is obtained as a primary possible choice and price-effective green fuel for T-SOFCs. This is because T-SOFCs have higher volumetric power density, mechanically stable, and high thermal shocking resistance. Also, there is no sealing issue problem which is the chronic issues of the planar one. As a result, the toxicity of ammonia to use as a fuel is minimized if there may be a leakage during operation. It is portable and manageable that can be work everywhere when there is energy demand. Besides, manufacturing, onboard hydrogen deposition, and transportation infrastructure connected snags of hydrogen will be solved using ammonia. Ammonia is a low-priced carbon-neutral source of energy and has more stored volumetric energy compared with hydrogen. Yet, to utilize direct NH3 as a means of hydrogen carrier and an alternative green fuel in T-SOFCs practically determining the optimum operating temperatures, reactant flow rates, electrode porosities, pressure, the position of the anode, thickness and diameters of the tube are still requiring further improvement. Therefore, mathematical modeling ought to be developed to determine these parameters before planning for experimental work. Also, a performance comparison of AS, ES, and CS- T-SOFC powered with direct NH3 will be investigated and best-performed support will be carefully chosen for practical implementation and an experimental study will be conducted for verification based on optimum parameter values obtained from numerical modeling.


Sign in / Sign up

Export Citation Format

Share Document