scholarly journals Fuel Economy Improvement of Urban Buses with Development of an Eco-Drive Scoring Algorithm Using Machine Learning

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4471
Author(s):  
Kibok Kim ◽  
Jinil Park ◽  
Jonghwa Lee

Eco-drive is a widely used concept. It can improve fuel economy for different driving behaviors such as vehicle acceleration or accelerator pedal operation, deceleration or coasting while slowing down, and gear shift timing difference. The feasibility of improving the fuel economy of urban buses by applying eco-drive was verified by analyzing data from drivers who achieved high fuel efficiencies in urban buses with a high frequency of acceleration/deceleration and frequent operation. The items that were monitored for eco-drive were: rapid take-off/acceleration/deceleration, accelerator pedal gradient, coasting rate, shift indicator violation, average engine speed, over speed, and gear shifting under low-end engine speed. The monitoring method for each monitored item was set up, and an index was produced using driving data. A fuel economy prediction model was created using machine learning to determine the contribution of each index to the fuel economy. Furthermore, the contribution of each monitoring item was analyzed using the prediction model explainer. Accordingly, points (defined as the eco-drive score) were allocated for each monitoring item. It was verified that this score can represent the eco-drive characteristics based on the relationship between the score and fuel economy. In addition, it resulted in an average annual fuel economy improvement of 12.1%.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4606
Author(s):  
Sunguk Hong ◽  
Cheoljeong Park ◽  
Seongjin Cho

Predicting the rail temperature of a railway system is important for establishing a rail management plan against railway derailment caused by orbital buckling. The rail temperature, which is directly responsible for track buckling, is closely related to air temperature, which continuously increases due to global warming effects. Moreover, railway systems are increasingly installed with continuous welded rails (CWRs) to reduce train vibration and noise. Unfortunately, CWRs are prone to buckling. This study develops a reliable and highly accurate novel model that can predict rail temperature using a machine learning method. To predict rail temperature over the entire network with high-prediction performance, the weather effect and solar effect features are used. These features originate from the analysis of the thermal environment around the rail. Precisely, the presented model has a higher performance for predicting high rail temperature than other models. As a convenient structural health-monitoring application, the train-speed-limit alarm-map (TSLAM) was also proposed, which visually maps the predicted rail-temperature deviations over the entire network for railway safety officers. Combined with TSLAM, our rail-temperature prediction model is expected to improve track safety and train timeliness.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4846
Author(s):  
Dušan Marković ◽  
Dejan Vujičić ◽  
Snežana Tanasković ◽  
Borislav Đorđević ◽  
Siniša Ranđić ◽  
...  

The appearance of pest insects can lead to a loss in yield if farmers do not respond in a timely manner to suppress their spread. Occurrences and numbers of insects can be monitored through insect traps, which include their permanent touring and checking of their condition. Another more efficient way is to set up sensor devices with a camera at the traps that will photograph the traps and forward the images to the Internet, where the pest insect’s appearance will be predicted by image analysis. Weather conditions, temperature and relative humidity are the parameters that affect the appearance of some pests, such as Helicoverpa armigera. This paper presents a model of machine learning that can predict the appearance of insects during a season on a daily basis, taking into account the air temperature and relative humidity. Several machine learning algorithms for classification were applied and their accuracy for the prediction of insect occurrence was presented (up to 76.5%). Since the data used for testing were given in chronological order according to the days when the measurement was performed, the existing model was expanded to take into account the periods of three and five days. The extended method showed better accuracy of prediction and a lower percentage of false detections. In the case of a period of five days, the accuracy of the affected detections was 86.3%, while the percentage of false detections was 11%. The proposed model of machine learning can help farmers to detect the occurrence of pests and save the time and resources needed to check the fields.


2021 ◽  
Vol 72 ◽  
pp. 110278
Author(s):  
Cheng-Mao Zhou ◽  
Qiong Xue ◽  
Hao-Tian Ye ◽  
Ying Wang ◽  
Jianhua Tong ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin-Woong Lee ◽  
Chaewon Park ◽  
Byung Do Lee ◽  
Joonseo Park ◽  
Nam Hoon Goo ◽  
...  

AbstractPredicting mechanical properties such as yield strength (YS) and ultimate tensile strength (UTS) is an intricate undertaking in practice, notwithstanding a plethora of well-established theoretical and empirical models. A data-driven approach should be a fundamental exercise when making YS/UTS predictions. For this study, we collected 16 descriptors (attributes) that implicate the compositional and processing information and the corresponding YS/UTS values for 5473 thermo-mechanically controlled processed (TMCP) steel alloys. We set up an integrated machine-learning (ML) platform consisting of 16 ML algorithms to predict the YS/UTS based on the descriptors. The integrated ML platform involved regularization-based linear regression algorithms, ensemble ML algorithms, and some non-linear ML algorithms. Despite the dirty nature of most real-world industry data, we obtained acceptable holdout dataset test results such as R2 > 0.6 and MSE < 0.01 for seven non-linear ML algorithms. The seven fully trained non-linear ML models were used for the ensuing ‘inverse design (prediction)’ based on an elitist-reinforced, non-dominated sorting genetic algorithm (NSGA-II). The NSGA-II enabled us to predict solutions that exhibit desirable YS/UTS values for each ML algorithm. In addition, the NSGA-II-driven solutions in the 16-dimensional input feature space were visualized using holographic research strategy (HRS) in order to systematically compare and analyze the inverse-predicted solutions for each ML algorithm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Miyoshi ◽  
Tsubasa Maeda ◽  
Katsuyoshi Matsuoka ◽  
Daisuke Saito ◽  
Sawako Miyoshi ◽  
...  

AbstractPredicting the response of patients with ulcerative colitis (UC) to a biologic such as vedolizumab (VDZ) before administration is an unmet need for optimizing individual patient treatment. We hypothesized that the machine-learning approach with daily clinical information can be a new, promising strategy for developing a drug-efficacy prediction tool. Random forest with grid search and cross-validation was employed in Cohort 1 to determine the contribution of clinical features at baseline (week 0) to steroid-free clinical remission (SFCR) with VDZ at week 22. Among 49 clinical features including sex, age, height, body weight, BMI, disease duration/phenotype, treatment history, clinical activity, endoscopic activity, and blood test items, the top eight features (partial Mayo score, MCH, BMI, BUN, concomitant use of AZA, lymphocyte fraction, height, and CRP) were selected for logistic regression to develop a prediction model for SFCR at week 22. In the validation using the external Cohort 2, the positive and negative predictive values of the prediction model were 54.5% and 92.3%, respectively. The prediction tool appeared useful for identifying patients with UC who would not achieve SFCR at week 22 during VDZ therapy. This study provides a proof-of-concept that machine learning using real-world data could permit personalized treatment for UC.


Sign in / Sign up

Export Citation Format

Share Document