scholarly journals Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5072
Author(s):  
Iftikhar Ahmad ◽  
Adil Sana ◽  
Manabu Kano ◽  
Izzat Iqbal Cheema ◽  
Brenno C. Menezes ◽  
...  

Machine Learning (ML) is one of the major driving forces behind the fourth industrial revolution. This study reviews the ML applications in the life cycle stages of biofuels, i.e., soil, feedstock, production, consumption, and emissions. ML applications in the soil stage were mostly used for satellite images of land to estimate the yield of biofuels or a suitability analysis of agricultural land. The existing literature have reported on the assessment of rheological properties of the feedstocks and their effect on the quality of biofuels. The ML applications in the production stage include estimation and optimization of quality, quantity, and process conditions. The fuel consumption and emissions stage include analysis of engine performance and estimation of emissions temperature and composition. This study identifies the following trends: the most dominant ML method, the stage of life cycle getting the most usage of ML, the type of data used for the development of the ML-based models, and the frequently used input and output variables for each stage. The findings of this article would be beneficial for academia and industry-related professionals involved in model development in different stages of biofuel’s life cycle.

Author(s):  
Iftikhar Ahmad ◽  
Manabu Kano ◽  
Brenno C. Menezes ◽  
Izzat Iqbal Cheema ◽  
Adil Sana ◽  
...  

Machine learning (ML) is penetrating in all walks of life and is one of the major driving forces behind the fourth industrial revolution, typically known as Industry 4.0. This study reviews the state-of-the-art ML applications in the biofuels’ life cycle stages, i.e., soil, feedstock, production, consumption, and emissions. A keyword search is performed to retrieve relevant articles from the databases of the Web of Science and Google Scholar. ML applications in the soil stage were mostly based on the use of satellite images of land for estimation of biofuels yield or suitability analysis of agricultural land. In the second stage of the life cycle, assessment of rheological properties of the feedstocks and their effect on the quality of biofuels were dominant studies reported in the literature. The production stage included estimation and optimization of quality, quantity, and process conditions. The fuel consumption and emissions stage included analysis of engine performance and estimation of emissions temperature and composition, such as NOx, CO, and CO2. This study identified the following trends: dominant ML method, the stage of life cycle getting more usage of ML, the type of data used for the development of the ML-based models, and the stage-wise frequently used input and output variables. The findings of this article are beneficial for academia and industry-related people involved in model development in different stages of biofuel’s life cycle.


Author(s):  
Iftikhar Ahmad ◽  
Manabu Kano ◽  
Brenno C. Menezes ◽  
Izzat Iqbal Cheema ◽  
Adil Sana ◽  
...  

Machine learning (ML) is penetrating in all walks of life and is one of the major driving forces behind the fourth industrial revolution, typically known as Industry 4.0. The purpose of the present study is to review the state-of-the-art ML applications in the biofuels' life cycle stages, i.e., soil, feedstock, production, consumption, and emissions. A keyword search is performed to retrieve relevant articles from the databases of the Web of Science and Google Scholar. ML applications in the soil stage were mostly based on the use of satellite images of land for estimation of biofuels yield or suitability analysis of agricultural land. In the second stage of the life cycle, assessment of rheological properties of the feedstocks and their effect on the quality of biofuels were dominant studies reported in the literature. The production stage included estimation and optimization of quality, quantity, and process conditions. The fuel consumption and emissions stage included analysis of engine performance and estimation of emissions temperature and composition, such as NOx CO, and CO2. This study identified the following trends: dominant ML method, the stage of life cycle getting more usage of ML, the type of data used for the development of the ML-based models, and the stage-wise frequently used input and output variables. The findings of this article are beneficial for academia and industry-related people involved in model development in different stages of biofuel’s life cycle.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qiuling Tao ◽  
Pengcheng Xu ◽  
Minjie Li ◽  
Wencong Lu

AbstractThe development of materials is one of the driving forces to accelerate modern scientific progress and technological innovation. Machine learning (ML) technology is rapidly developed in many fields and opening blueprints for the discovery and rational design of materials. In this review, we retrospected the latest applications of ML in assisting perovskites discovery. First, the development tendency of ML in perovskite materials publications in recent years was organized and analyzed. Second, the workflow of ML in perovskites discovery was introduced. Then the applications of ML in various properties of inorganic perovskites, hybrid organic–inorganic perovskites and double perovskites were briefly reviewed. In the end, we put forward suggestions on the future development prospects of ML in the field of perovskite materials.


Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 445
Author(s):  
Morena M. Tinte ◽  
Kekeletso H. Chele ◽  
Justin J. J. van der Hooft ◽  
Fidele Tugizimana

Plants are constantly challenged by changing environmental conditions that include abiotic stresses. These are limiting their development and productivity and are subsequently threatening our food security, especially when considering the pressure of the increasing global population. Thus, there is an urgent need for the next generation of crops with high productivity and resilience to climate change. The dawn of a new era characterized by the emergence of fourth industrial revolution (4IR) technologies has redefined the ideological boundaries of research and applications in plant sciences. Recent technological advances and machine learning (ML)-based computational tools and omics data analysis approaches are allowing scientists to derive comprehensive metabolic descriptions and models for the target plant species under specific conditions. Such accurate metabolic descriptions are imperatively essential for devising a roadmap for the next generation of crops that are resilient to environmental deterioration. By synthesizing the recent literature and collating data on metabolomics studies on plant responses to abiotic stresses, in the context of the 4IR era, we point out the opportunities and challenges offered by omics science, analytical intelligence, computational tools and big data analytics. Specifically, we highlight technological advancements in (plant) metabolomics workflows and the use of machine learning and computational tools to decipher the dynamics in the chemical space that define plant responses to abiotic stress conditions.


2020 ◽  
Vol 6 (3) ◽  
pp. 599-603
Author(s):  
Michael Friebe

AbstractThe effectiveness, efficiency, availability, agility, and equality of global healthcare systems are in question. The COVID-19 pandemic have further highlighted some of these issues and also shown that healthcare provision is in many parts of the world paternalistic, nimble, and often governed too extensively by revenue and profit motivations. The 4th industrial revolution - the machine learning age - with data gathering, analysis, optimisation, and delivery changes has not yet reached Healthcare / Health provision. We are still treating patients when they are sick rather then to use advanced sensors, data analytics, machine learning, genetic information, and other exponential technologies to prevent people from becoming patients or to help and support a clinicians decision. We are trying to optimise and improve traditional medicine (incremental innovation) rather than to use technologies to find new medical and clinical approaches (disruptive innovation). Education of future stakeholders from the clinical and from the technology side has not been updated to Health 4.0 demands and the needed 21st century skills. This paper presents a novel proposal for a university and innovation lab based interdisciplinary Master education of HealthTEC innovation designers.


Author(s):  
Mythili K. ◽  
Manish Narwaria

Quality assessment of audiovisual (AV) signals is important from the perspective of system design, optimization, and management of a modern multimedia communication system. However, automatic prediction of AV quality via the use of computational models remains challenging. In this context, machine learning (ML) appears to be an attractive alternative to the traditional approaches. This is especially when such assessment needs to be made in no-reference (i.e., the original signal is unavailable) fashion. While development of ML-based quality predictors is desirable, we argue that proper assessment and validation of such predictors is also crucial before they can be deployed in practice. To this end, we raise some fundamental questions about the current approach of ML-based model development for AV quality assessment and signal processing for multimedia communication in general. We also identify specific limitations associated with the current validation strategy which have implications on analysis and comparison of ML-based quality predictors. These include a lack of consideration of: (a) data uncertainty, (b) domain knowledge, (c) explicit learning ability of the trained model, and (d) interpretability of the resultant model. Therefore, the primary goal of this article is to shed some light into mentioned factors. Our analysis and proposed recommendations are of particular importance in the light of significant interests in ML methods for multimedia signal processing (specifically in cases where human-labeled data is used), and a lack of discussion of mentioned issues in existing literature.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1044
Author(s):  
Yassine Bouabdallaoui ◽  
Zoubeir Lafhaj ◽  
Pascal Yim ◽  
Laure Ducoulombier ◽  
Belkacem Bennadji

The operation and maintenance of buildings has seen several advances in recent years. Multiple information and communication technology (ICT) solutions have been introduced to better manage building maintenance. However, maintenance practices in buildings remain less efficient and lead to significant energy waste. In this paper, a predictive maintenance framework based on machine learning techniques is proposed. This framework aims to provide guidelines to implement predictive maintenance for building installations. The framework is organised into five steps: data collection, data processing, model development, fault notification and model improvement. A sport facility was selected as a case study in this work to demonstrate the framework. Data were collected from different heating ventilation and air conditioning (HVAC) installations using Internet of Things (IoT) devices and a building automation system (BAS). Then, a deep learning model was used to predict failures. The case study showed the potential of this framework to predict failures. However, multiple obstacles and barriers were observed related to data availability and feedback collection. The overall results of this paper can help to provide guidelines for scientists and practitioners to implement predictive maintenance approaches in buildings.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 574
Author(s):  
Claudia F. Galinha ◽  
João G. Crespo

Membrane processes are complex systems, often comprising several physicochemical phenomena, as well as biological reactions, depending on the systems studied. Therefore, process modelling is a requirement to simulate (and predict) process and membrane performance, to infer about optimal process conditions, to assess fouling development, and ultimately, for process monitoring and control. Despite the actual dissemination of terms such as Machine Learning, the use of such computational tools to model membrane processes was regarded by many in the past as not useful from a scientific point-of-view, not contributing to the understanding of the phenomena involved. Despite the controversy, in the last 25 years, data driven, non-mechanistic modelling is being applied to describe different membrane processes and in the development of new modelling and monitoring approaches. Thus, this work aims at providing a personal perspective of the use of non-mechanistic modelling in membrane processes, reviewing the evolution supported in our own experience, gained as research group working in the field of membrane processes. Additionally, some guidelines are provided for the application of advanced mathematical tools to model membrane processes.


Author(s):  
Michael Gorelik ◽  
Jacob Obayomi ◽  
Jack Slovisky ◽  
Dan Frias ◽  
Howie Swanson ◽  
...  

While turbine engine Original Equipment Manufacturers (OEMs) accumulated significant experience in the application of probabilistic methods (PM) and uncertainty quantification (UQ) methods to specific technical disciplines and engine components, experience with system-level PM applications has been limited. To demonstrate the feasibility and benefits of an integrated PM-based system, a numerical case study has been developed around the Honeywell turbine engine application. The case study uses experimental observations of engine performance such as horsepower and fuel flow from a population of engines. Due to manufacturing variability, there are unit-to-unit and supplier-to-supplier variations in compressor blade geometry. Blade inspection data are available for the characterization of these geometric variations, and CFD analysis can be linked to the engine performance model, so that the effect of blade geometry variation on system-level performance characteristics can be quantified. Other elements of the case study included the use of engine performance and blade geometry data to perform Bayesian updating of the model inputs, such as efficiency adders and turbine tip clearances. A probabilistic engine performance model was developed, system-level sensitivity analysis performed, and the predicted distribution of engine performance metrics was calibrated against the observed distributions. This paper describes the model development approach and key simulation results. The benefits of using PM and UQ methods in the system-level framework are discussed. This case study was developed under Defense Advanced Research Projects Agency (DARPA) funding which is gratefully acknowledged.


Sign in / Sign up

Export Citation Format

Share Document