scholarly journals Influence of Swirl Clocking on the Performance of Turbine Stage with Three-Dimensional Nozzle Guide Vane

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5503
Author(s):  
Shinyoung Jeon ◽  
Changmin Son ◽  
Jinuk Kim

The effect of the swirl clocking on three-dimensional nozzle guide vane (NGV) is investigated using computational fluid dynamics. The research reports the loss characteristics of leaned and swept NGVs and the influence of swirl clocking. The three-dimensional NGVs are built by stacking the same 2D profile along different linear axes, characterized by different angles with respect to the normal or radial direction: ε = −12° ~ +12° for the leaned and γ = −5° ~ +10° for the swept airfoils. A total of 40 models are analyzed to study the effects of lean and sweep on aerodynamic performance. To investigate the influence of swirl clocking, the analysis cases include the center of the swirl that was positioned at the leading edge as well as the middle of the passage. The prediction results show that the relationship of the changes in mass flow rate and throat area are not monotonic. Further observation confirms the redistribution of loading and flow angle under different lean and sweep angles; thus, three-dimensional design is a key influencing factor on aerodynamic performance. In the presence of swirl clocking, NGV performance is changed significantly and the findings offer new insight and opportunities to improve three-dimensional NGV airfoil design.

Author(s):  
Ranjan Saha ◽  
Boris I. Mamaev ◽  
Jens Fridh ◽  
Björn Laumert ◽  
Torsten H. Fransson

Experiments are conducted to investigate the effect of the pre-history in the aerodynamic performance of a three-dimensional nozzle guide vane with a hub leading edge contouring. The performance is determined with two pneumatic probes (5 hole and 3 hole) concentrating mainly on the endwall. The investigated vane is a geometrically similar gas turbine vane for the first stage with a reference exit Mach number of 0.9. Results are compared for the baseline and filleted cases for a wide range of operating exit Mach numbers from 0.5 to 0.9. The presented data includes loading distributions, loss distributions, fields of exit flow angles, velocity vector and vorticity contour, as well as, mass-averaged loss coefficients. The results show an insignificant influence of the leading edge fillet on the performance of the vane. However, the pre-history (inlet condition) affects significantly in the secondary loss. Additionally, an oil visualization technique yields information about the streamlines on the solid vane surface which allows identifying the locations of secondary flow vortices, stagnation line and saddle point.


2011 ◽  
Vol 110-116 ◽  
pp. 1047-1053
Author(s):  
Zhi Gang Liu ◽  
Xiang Jun Fang ◽  
Si Yong Liu ◽  
Ping Wang ◽  
Zhao Yin

A highly loaded high-pressure turbine with a supersonic nozzle guide vane and a transonic rotor for a Variable Cycle Engine (VCE) has been investigated. Film cooling strategies were designed for the whole stage, during which the positions, injection orientations and arrangements of cooling holes were confirmed. Three-dimensional steady numerical simulations have been performed in the two operation modes of low and high bypass ratio with different thermodynamic cycle parameters according to the VCE and the coolant injections have been simulated by means of additional source term method. The influences of coolant injections in the fully cooled turbine stage on aerodynamic performance and flow characteristics have been analyzed. The results indicate that, the supersonic nozzle guide vane, over-expansion degree of main flows, fluctuations of static pressure and intensity of corner vortex are lessened or alleviated. In the transonic rotor, expansion and doing work capabilities in the mixed fluid are strengthened. Proper coolants injections are beneficial to the flow characteristics in the blade passage.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Ranjan Saha ◽  
Boris I. Mamaev ◽  
Jens Fridh ◽  
Björn Laumert ◽  
Torsten H. Fransson

Experiments are conducted to investigate the effect of the prehistory in the aerodynamic performance of a three-dimensional nozzle guide vane with a hub leading edge contouring. The performance is determined with two pneumatic probes (five hole and three hole) concentrating mainly on the end wall. The investigated vane is a geometrically similar gas turbine vane for the first stage with a reference exit Mach number of 0.9. Results are compared for the baseline and filleted cases for a wide range of operating exit Mach numbers from 0.5 to 0.9. The presented data includes loading distributions, loss distributions, fields of exit flow angles, velocity vector, and vorticity contour, as well as mass-averaged loss coefficients. The results show an insignificant influence of the leading edge fillet on the performance of the vane. However, the prehistory (inlet condition) affects significantly in the secondary loss. Additionally, an oil visualization technique yields information about the streamlines on the solid vane surface, which allows identifying the locations of secondary flow vortices, stagnation line, and saddle point.


Author(s):  
Mahmood H. Alqefl ◽  
Kedar P. Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong W. Kim ◽  
...  

Abstract The first stage turbine of a modern gas turbine is subjected to high thermal loads which lead to a need for aggressive cooling schemes to protect its components from melting. Endwalls are particularly challenging to cool due to the complex system of secondary flows near them that wash the protective film coolants into the mainstream. This paper shows that without including combustor cooling, the complex secondary flow physics are not representative of modern engines. Aggressive injection of all cooling flows upstream of the passage is expected to interact and change passage aerodynamics and, subsequently, mixing and transport of coolants. This study describes, experimentally, the aero-thermal interaction of cooling flows near the endwall of a first stage nozzle guide vane passage. The test section involves an engine-representative combustor-turbine interface geometry, combustor coolant flow and endwall film cooling flow injected upstream of a linear cascade. The approach flow conditions represent flow exiting a cooled, low-NOx combustor. This first part of this two-part study aims to understand the complex aerodynamics near the endwall through detailed measurements of passage three-dimensional velocity fields with and without endwall film cooling. The aerodynamic measurements reveal a dominant vortex in the passage, named here as the Impingement Vortex, that opposes the passage vortex formed at the airfoil leading edge plane. This Impingement Vortex completely changes our description of flow over a modern film cooled endwall.


2021 ◽  
pp. 1-54
Author(s):  
Mahmood H. Alqefl ◽  
Kedar P. Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong W. Kim ◽  
...  

Abstract The first stage turbine of a modern gas turbine is subjected to high thermal loads which lead to a need for aggressive cooling schemes to protect its components from melting. Endwalls are particularly challenging to cool due to the complex system of secondary flows near them that wash the protective film coolants into the mainstream. This paper shows that without including combustor cooling, the complex secondary flow physics are not representative of modern engines. Aggressive injection of all cooling flows upstream of the passage is expected to interact and change passage aerodynamics and, subsequently, mixing and transport of coolants. This study describes, experimentally, the aero-thermal interaction of cooling flows near the endwall of a first stage nozzle guide vane passage. The test section involves an engine-representative combustor-turbine interface geometry, combustor coolant flow and endwall film cooling flow injected upstream of a linear cascade. The approach flow conditions represent flow exiting a cooled, low-NOx combustor. This first part of this two-part study aims to understand the complex aerodynamics near the endwall through detailed measurements of passage three-dimensional velocity fields with and without endwall film cooling. The aerodynamic measurements reveal a dominant vortex in the passage, named here as the Impingement Vortex, that opposes the passage vortex formed at the airfoil leading edge plane. This Impingement Vortex completely changes our description of flow over a modern film cooled endwall.


Author(s):  
Wu Sang Lee ◽  
Jin Taek Chung ◽  
Dae Hyun Kim ◽  
Seung Joo Choe

The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear turbine with contoured endwall configurations was used and changes in the three-dimensional flow field were analyzed and discussed. Contoured endwalls are installed at a location downstream of the saddle point near the leading edge of the pressure side blade and several positions along the centerline of the passage at constant distance. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. In addition, it proposes and appropriates endwall contouring which shows best overall loss reduction performance among the simulated contoured endwall. The results of this study show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall, the best performance was shown for the case of 10–15% contoured for span-wise, 40–70% length of chord from trailing edge.


Author(s):  
Ranjan Saha ◽  
Jens Fridh ◽  
Torsten Fransson ◽  
Boris I. Mamaev ◽  
Mats Annerfeldt

An experimental study of the hub leading edge contouring using fillets is performed in an annular sector cascade to observe the influence of secondary flows and aerodynamic losses. The investigated vane is a three dimensional gas turbine guide vane (geometrically similar) with a mid-span aspect ratio of 0.46. The measurements are carried out on the leading edge fillet and baseline cases using pneumatic probes. Significant precautions have been taken to increase the accuracy of the measurements. The investigations are performed for a wide range of operating exit Mach numbers from 0.5 to 0.9 at a design inlet flow angle of 90°. Data presented include the loading, fields of total pressures, exit flow angles, radial flow angles, as well as profile and secondary losses. The vane has a small profile loss of approximately 2.5% and secondary loss of about 1.1%. Contour plots of vorticity distributions and velocity vectors indicate there is a small influence of the vortex-structure in endwall regions when the leading edge fillet is used. Compared to the baseline case the loss for the filleted case is lower up to 13% of span and higher from 13% to 20% of the span for a reference condition with Mach no. of 0.9. For the filleted case, there is a small increase of turning up to 15% of the span and then a small decrease up to 35% of the span. Hence, there are no significant influences on the losses and turning for the filleted case. Results lead to the conclusion that one cannot expect a noticeable effect of leading edge contouring on the aerodynamic efficiency for the investigated 1st stage vane of a modern gas turbine.


1993 ◽  
Vol 115 (2) ◽  
pp. 283-295 ◽  
Author(s):  
W. N. Dawes

This paper describes recent developments to a three-dimensional, unstructured mesh, solution-adaptive Navier–Stokes solver. By adopting a simple, pragmatic but systematic approach to mesh generation, the range of simulations that can be attempted is extended toward arbitrary geometries. The combined benefits of the approach result in a powerful analytical ability. Solutions for a wide range of flows are presented, including a transonic compressor rotor, a centrifugal impeller, a steam turbine nozzle guide vane with casing extraction belt, the internal coolant passage of a radial inflow turbine, and a turbine disk cavity flow.


Author(s):  
M. Funes-Gallanzi ◽  
P. J. Bryanston-Cross ◽  
K. S. Chana

The quantitative whole field flow visualization technique of PIV has over the last few years been successfully demonstrated for transonic flow applications. A series of such measurements has been made at DRA Pyestock. Several of the development stages critical to a full engine application of the work have now been achieved using the Isentropic Light Piston Cascade (ILPC) test facility operating with high inlet turbulence levels: • A method of seeding the flow with 0.5μm diameter styrene particles has provided an even coverage of the flow field. • A method of projecting a 1 mm thick high power Nd/YAG laser light sheet within the turbine stator cascade. This has enabled a complete instantaneous intra-blade velocity mapping of the flow field to be visualized, by a specially developed diffraction-limited optics arrangement. • Software has been developed to automatically analyze the data. Due to the sparse nature of the data obtained, a spatial approach to the extraction of the velocity vector data was employed. • Finally, a comparison of the experimental results with those obtained from a three-dimensional viscous flow program of Dawes; using the Baldwin-Lomax model for eddy viscosity and assuming fully turbulent flow. The measurements provide an instantaneous quantitative whole field visualization of a high-speed unsteady region of flow in a highly three-dimensional nozzle guide vane; which has been successfully compared with a full viscous calculation. This work represents the first such measurements to be made in a full-size transonic annular cascade at engine representative conditions.


2017 ◽  
Vol 139 (11) ◽  
Author(s):  
Ioanna Aslanidou ◽  
Budimir Rosic

This paper presents an experimental investigation of the concept of using the combustor transition duct wall to shield the nozzle guide vane leading edge. The new vane is tested in a high-speed experimental facility, demonstrating the improved aerodynamic and thermal performance of the shielded vane. The new design is shown to have a lower average total pressure loss than the original vane, and the heat transfer on the vane surface is overall reduced. The peak heat transfer on the vane leading edge–endwall junction is moved further upstream, to a region that can be effectively cooled as shown in previously published numerical studies. Experimental results under engine-representative inlet conditions showed that the better performance of the shielded vane is maintained under a variety of inlet conditions.


Sign in / Sign up

Export Citation Format

Share Document