scholarly journals A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6504
Author(s):  
Zbigniew Stępień

This paper provides a comprehensive review and critical analysis of the latest research results in addition to an overview of the future challenges and opportunities regarding the use of hydrogen to power internal combustion engines (ICEs). The experiences and opinions of various international research centers on the technical possibilities of using hydrogen as a fuel in ICE are summarized. The advantages and disadvantages of the use of hydrogen as a solution are described. Attention is drawn to the specific physical, chemical, and operational properties of hydrogen for ICEs. A critical review of hydrogen combustion concepts is provided, drawing on previous research results and experiences described in a number of research papers. Much space is devoted to discussing the challenges and opportunities associated with port and direct hydrogen injection technology. A comparison of different fuel injection and ignition strategies and the benefits of using the synergies of selected solutions are presented. Pointing to the previous experiences of various research centers, the hazards related to incorrect hydrogen combustion, such as early pre-ignition, late pre-ignition, knocking combustion, and backfire, are described. Attention is focused on the fundamental importance of air ratio optimization from the point of view of combustion quality, NOx emissions, engine efficiency, and performance. Exhaust gas scrubbing to meet future emission regulations for hydrogen powered internal combustion engines is another issue that is considered. The article also discusses the modifications required to adapt existing engines to run on hydrogen. Referring to still-unsolved problems, the reliability challenges faced by fuel injection systems, in particular, are presented. An analysis of more than 150 articles shows that hydrogen is a suitable alternative fuel for spark-ignition engines. It will significantly improve their performance and greatly reduce emissions to a fraction of their current level. However, its use also has some drawbacks, the most significant of which are its high NOx emissions and low power output, and problems in terms of the durability and reliability of hydrogen-fueled engines.

Author(s):  
T. Shudo ◽  
H. Oka

Hydrogen is a clean alternative to fossil fuels for internal combustion engines and can be easily used in spark-ignition engines. However, the characteristics of the engines fueled with hydrogen are largely different from those with conventional hydrocarbon fuels. A higher burning velocity and a shorter quenching distance for hydrogen as compared with hydrocarbons bring a higher degree of constant volume and a larger heat transfer from the burning gas to the combustion chamber wall of the engines. Because of the large heat loss, the thermal efficiency of an engine fueled with hydrogen is sometimes lower than that with hydrocarbons. Therefore, the analysis and the reduction of the heat loss are crucial for the efficient utilization of hydrogen in internal combustion engines. The empirical correlations to describe the total heat transferred from the burning gas to the combustion chamber walls are often used to calculate the heat loss in internal combustion engines. However, the previous research by one of the authors has shown that the widely used heat transfer correlations cannot be properly applied to the hydrogen combustion even with adjusting the constants in them. For this background, this research analyzes the relationship between characteristics of thermophysical properties of working substance and heat transfer to the wall in a spark-ignition engine fueled with hydrogen.


Author(s):  
Joachim Demuynck ◽  
Sebastian Verhelst ◽  
Michel De Paepe ◽  
Henk Huisseune ◽  
Roger Sierens

Hydrogen-fuelled internal combustion engines are still investigated as an alternative for current drive trains because they have a high efficiency, near-zero noxious and zero tailpipe greenhouse gas emissions. A thermodynamic model of the engine cycle enables a cheap and fast optimization of engine settings for operation on hydrogen. The accuracy of the heat transfer sub model within the thermodynamic model is important to simulate accurately the emissions of oxides of nitrogen which are influenced by the maximum gas temperature. These emissions can occur in hydrogen internal combustion engines at high loads and they are an important constraint for power and efficiency optimization. The most common models in engine research are those from Annand and Woschni, but they are developed for fossil fuels and the heat transfer of hydrogen differs a lot from the classic fuels. We have measured the heat flux and the wall temperature in an engine that can run on hydrogen and methane and we have investigated the accuracy of simulations of the heat transfer models. This paper describes an evaluation of the models of Annand and Woschni with our heat flux measurements. Both models can be calibrated to account for the influence of the specific engine geometry on the heat transfer. But if they are calibrated for methane, they fail to calculate the heat transfer for hydrogen combustion. This demonstrates the models lack some gas or combustion properties which influence the heat transfer process in the case of hydrogen combustion.


The article presents an assessment of the dependence of the fuel supply on the wave phenomena in the highpressure line that occur during multiple injection. After injection, fluctuations in the fuel pressure in the fuel injection line occur, which significantly affect the cycle delivery and injection behavior of subsequent multiple injections. A promising design of a fuel rail is presented and a method for controlling wave phenomena in a highpressure line of a Common Rail is proposed. Keywords wave phenomena; multiple injection; Common Rail; electrohydraulic injector; fuel rail


2020 ◽  
Author(s):  
Zbigniew Stępień

The undesirable deposits forming on the surfaces of various internal parts of reciprocating internal combustion engines and the systems operating in conjunction with them worsen during the operation of the engines and threaten their proper functioning. The deposits form as a normal result of the processes of fuel injection and creating and combusting the fuel–air mixture in engines. It was not investigated until the beginning of the 21st century, when extensive multi-directional research began not only to identify the causes of these deposits, the mechanisms behind their formation, and the factors leading to deposit growth, but also to determine the chemical composition of various groups of deposits. Such research became necessary because engines must comply with gradually tightening regulations on environmental protection, necessitating the introduction of increasingly complex engine designs and strategies for controlling the processes of precise and divided fuel injection into the combustion chambers and advanced algorithms for controlling the combustion processes according to the combustion system and the purpose of the engine. However, it became apparent that the co-functioning of the increasingly complex engine technologies and solutions, particularly of fuel injection systems, may be significantly disturbed by the deposits forming inside them. More and more complicated engine designs with tighter and tighter tolerances of the working parts necessitate the multi-directional testing of harmful deposits. An increasing number of factors affecting deposit formation are being identified, which leads to the development of increasingly complex classifications and subdivisions of deposits according to their type, composition, and form. At the same time, the search for lower emissions and greater engine efficiency is driving further mechanical changes in engines and vehicles. The higher temperatures and pressures connected with these changes are likely to impact the fuel being handled within the fuel and combustion systems. Such effects will inevitably cause the deposit chemistry and morphology to change. The size of the coke deposits produced may disturb the processes of fuel atomization, of filling the engine combustion chambers and swirling the charge, and in consequence may affect the efficiency of filling and the quality of the fuel–air mixture. These problems led to the development of a number of standardized and unstandardized methods for assessing the size of deposits. It was found that in the case of SI engines, the deposits that most endanger correct engine operation are those which are formed in the combustion chambers, on the inlet valves, inlet ducts, and fuel injector tips. The most common sign of deterioration caused by deposits is the loss over time of the performance, usability, and operational value which were originally declared by the manufacturer. In the case of CI engines, the most dangerous are coke (carbon) deposits formed on the external surfaces of the fuel injector nozzle tips and inside the injector nozzle orifices. In Europe, mandatory procedures for assessing the size of different coke deposits formed on different components in both SI and CI engines are being developed by the Coordinating European Council for the Development of Performance Tests for Transportation Fuels, Lubricants, and Other Fluids (CEC). The theoretical part of this publication reports the problems of the deposits produced in reciprocating internal combustion engines and their fuel systems. It discusses standard and non-standard engine test methods for both quantitative and qualitative assessment of deposits and presents the significance of the assessment methods which are currently used for the classification of deposits. The publication also presents the scope of application and the usefulness of methods for determining the threats posed to the functioning of an engine by various types of deposits and methods for identifying the causes of deposit formation, in particular those related to the composition of the fuels and lubricating oils used. The effects which fuel composition and the engine’s construction and operating parameters have on various engine deposits, the possible causes of deposit formation, and the importance of modern deposit control additives and high-technology solutions in counteracting this detrimental phenomenon are also all discussed. The experimental part presents the results of research carried out at the Oil and Gas Institute – National Research Institute concerning: • the incomparability of measurements of fuel performance obtained from various engine tests, • studies on the influence of various deposit control additives on the formation of harmful engine deposits during engine tests, • the influence of fuel treatments on the deposit formation processes in internal combustion engines (described qualitatively or quantitatively), • determination of the impact which various chemical compounds, serving as contaminants within the fuels, have on deposit formation in internal combustion engines and fuel injection systems, • determination of the impact that various chemical structures of the compounds within the fuels and biofuel blends have on deposit formation in internal combustion engines and fuel injection systems, • studies on the influence of bio-components contained in both petrol and diesel fuels on tendency for deposits to form in internal combustion engines, and • multidirectional studies on the impact of FAME degradation processes in biodiesel fuel blends on the formation of harmful engine deposits.


Author(s):  
Никулин ◽  
M. Nikulin ◽  
Новиков ◽  
A. Novikov

In this article gasoline engines of internal combustion with direct fuel injection, their advantages and shortcomings are considered, comparative analysis of two most effective systems allowing to use gas as an alternative type of fuel.


Author(s):  
Michael Pamminger ◽  
Thomas Wallner ◽  
James Sevik ◽  
Riccardo Scarcelli ◽  
Carrie Hall ◽  
...  

The need to further reduce fuel consumption and decrease the output of emissions — in order to be within future emissions legislation — is still an ongoing effort for the development of internal combustion engines. Natural gas is a fossil fuel which is comprised mostly of methane and makes it very attractive for use in internal combustion engines because of its higher knock resistance and higher molar hydrogen-to-carbon ratio compared to gasoline. The current paper compares the combustion and emissions behavior of the test engine being operated on either a representative U.S. market gasoline or natural gas. Moreover, specific in-cylinder blend ratios with gasoline and natural gas were also investigated at part-load and wide open throttle conditions. The dilution tolerance for part-load operation was investigated by adding cooled exhaust gas recirculation. The engine used for these investigations was a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Gasoline was injected into the intake port; natural gas was injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Injecting natural gas directly into the cylinder reduced both ignition delay and combustion duration of the combustion process compared to the injection of gasoline into the intake port. Injecting natural gas and gasoline simultaneously resulted in a higher dilution tolerance compared to operation on one of the fuels alone. Significantly higher net indicated mean effective pressure and indicated thermal efficiency were achieved when natural gas was directly injected after intake valve closing at wide open throttle, compared to an injection while the intake valves were still open. In general it was shown that the blend ratio and the start of injection need to be varied depending on load and dilution level in order to operate the engine with the highest efficiency or highest load.


Sign in / Sign up

Export Citation Format

Share Document