scholarly journals Reduction of Total Harmonic Distortion of Wind Turbine Active Power Using Blade Angle Adaptive PI Controller

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6798
Author(s):  
Ahmed M. Shawqran ◽  
Abdallah El-Marhomy ◽  
Mariam A. Sameh ◽  
Mahmoud A. Attia

Power quality can have a large detrimental effect on industrial processes and the commercial sector. Thus, this paper proposes a new technique to improve the power quality of electric power systems. This technique relies on auto-adjusting of the blade angle to mitigate the harmonics in wind generator active power. A new adaptive PI blade-angle controller is applied in this technique to reduce the total harmonic distortion (THD) of the output power. The parameters of the adaptive PI controller are initialized by using the Harmony Search algorithm (HSA), hybrid Harmony Search optimization and Equilibrium optimization (EO), and hybrid Harmony Search optimization and Teaching learning-based optimization (TLBO). The execution of the optimization algorithms relies mainly on the optimization objective function. Two optimization objective functions are mathematically modeled and compared to enhance the power quality. The first one is to minimize the sum square of error, while the second objective is to minimize the THD. Many case studies are applied with various wind-speed profiles under normal and faulty conditions. Results show the superiority of HSA hybrid EO algorithm with the second objective functions through reducing the harmonics and enhancing the power quality. Moreover, laboratory studies are applied to investigate the effect of the blade-angle variations on the extracted active power.

Author(s):  
Dasari Vinay

In this paper we are going to see how the DSM PI controller is used to reduce the harmonics in faster. DSM PI controller steps up the voltage to required level. The main aim is to improve the total harmonic distortion. Keywords: Shunt active filter, hybrid active filters, DSM PI controller


Author(s):  
Pankaj Gakhar ◽  
Manoj Gupta

<p>In this paper, a novel and dynamic, current control based inverter control strategy has been used for energy optimization and power quality improvement in a grid-connected solar photovoltaic plant using a PI controller. The output of the plant is delivered to the grid passing through a boost converter controlled by an MPPT controller and an inverter. The control strategy proposed offers the flexibility to keep control of active as well as reactive power being injected straight into the grid and also helps in mitigating the total harmonic distortion levels. Also, the effect of the conventional PI controller and PI controller optimized through Genetic Algorithm has been compared. The GA-PI controller has been found effective in reducing the Total Harmonic Distortion in the current injected in the grid. The effectiveness of the work has been observed by using a MATLAB/SIMULINK environment.</p>


Author(s):  
Chau Minh Thuyen ◽  
Truong Khac Tung ◽  
Nguyen Hoai Phong

<p>This paper proposes a new multi-objective optimization design method for Hybrid Active Power Filter based on the Vortex Search algorithm. The Vortex Search algorithm belongs to the Single-Solution Based algorithm class of Metaheuristics algorithm. This design method has the advantage of fast execution time, high convergence speed and prevent local trap problems. The achieved results are multi-objective, such as minimum total harmonic distortion of the supply current and source voltage and satisfy many constraints such as system stability, resonance conditions of branches and limits of the parameters. Compared with the traditional design method, simulation results have proved that: the proposed design method is given with better results in minimizing total harmonic distortion of the supply current and source voltage.</p>


Author(s):  
P. Thirumoorthi ◽  
Raheni T D

Power system harmonics are a menace to electric power system with disastrous consequence. Due to the presence of non linear load, power quality of the system gets affected.  To overcome this, shunt active power filter have been used near harmonic producing loads or at the point of common coupling to block current harmonics. The shunt active power filter is designed to minimize harmonics in source current and reactive power in the non linear power supplies which are creating harmonics. In this paper, Instantaneous power of p-q theory is employed to generate the reference currents and PI controller is used to control the dc link voltage. In addition to this, Artificial Intelligence (AI) technique is used to minimize the harmonics produced by nonlinear load. The main objective of this paper is to analyze and compare THD of the source current with PI controller and by artificial neural network based back propagation algorithm. The proposed system is designed with MATLAB/SIMULINK environment.


Author(s):  
Mushtaq Najeeb ◽  
Hamdan Daniyal ◽  
Ramdan Razali ◽  
Muhamad Mansor

This research implements a PI controller based on harmony search (HS) optimization algorithm for voltage source inverter to improve the output performance under step load change conditions. The HS algorithm aims to handle the trial and error procedure used in finding the PI parameters and then apply the proposed control algorithm via the eZdsp TMS320F28355 board to link the inverter prototype with the Matlab Simulink. The mean absolute error (MAE) is used as an optimization problem to minimize the output voltage error for the developed controller (PI-HS) as compared to the PI controller based particale swarm optimization algorithm (PI-PSO). Based on the experimental results obtained, it is noted that the proposed controller (PI-HS) provides a good dynamic performance, robustness, constant voltage amplitude, and fast response in terms of overshoot, transient, and steady-state.


2020 ◽  
Vol 12 (15) ◽  
pp. 6087 ◽  
Author(s):  
Aylin Ece Kayabekir ◽  
Zülal Akbay Arama ◽  
Gebrail Bekdaş ◽  
Sinan Melih Nigdeli ◽  
Zong Woo Geem

In this study, considering the eco-friendly design necessities of reinforced concrete structures, the acquirement of minimizing both the cost and the CO2 emission of the reinforced concrete retaining walls in conjunction with ensuring stability conditions has been investigated using harmony search algorithm. Optimization analyses were conducted with the use of two different objective functions to discover the contribution rate of variants to the cost and CO2 emission individually. Besides this, the integrated relationship of cost and CO2 emission was also identified by multi-objective analysis in order to identify an eco-friendly and cost-effective design. The height of the stem and the width of the foundation were treated as design variables. Several optimization cases were fictionalized in relation with the change of the depth of excavation, the amount of the surcharge applied at the top of the wall system at the backfill side, the unit weight of the backfill soil, the costs, and CO2 emission amounts of both the concrete and the reinforcement bars. Consequently, the results of the optimization analyses were arranged to discover the possibility of supplying an eco-friendly design of retaining walls with the minimization of both cost and gas emission depending upon the comparison of outcomes of the identified objective functions. The proposed approach is effective to find both economic and ecological results according to hand calculations and flower pollination algorithm.


Sign in / Sign up

Export Citation Format

Share Document