scholarly journals Accuracy of Simplified Modelling Assumptions on External and Internal Driving Forces in the Building Energy Performance Simulation

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6841
Author(s):  
Giovanna De Luca ◽  
Franz Bianco Mauthe Degerfeld ◽  
Ilaria Ballarini ◽  
Vincenzo Corrado

The recently issued EN ISO 52016-1 technical standard provides a new simplified dynamic method for the building energy performance assessment. Since an extensive validation of the EN ISO 52016-1 hourly method is still missing, the present work investigates the effect of the main modelling assumptions—related to the heat balance on the outdoor and the indoor envelope surfaces—on the building thermal behaviour. The model validation was carried out by assessing the accuracy variation consequent to the application of the EN ISO 52016-1 modelling assumptions to a detailed dynamic calculation tool (EnergyPlus). To guarantee a general validity of the outcomes, two buildings, two levels of thermal insulation, and two Italian climatic zones were considered, for a total of eight case studies. To explore different applications of the standard method, the analysis was performed both under a free-floating condition—to evaluate the accuracy of the model in predicting the indoor operative temperatures—and to assess the annual energy needs for space heating and cooling. Results show that the assumptions related to the definition of the external convective and the shortwave (solar) radiation heat transfer lead to non-negligible inaccuracies in the EN ISO 52016-1 hourly model.

2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 447-459 ◽  
Author(s):  
Bojan Andjelkovic ◽  
Branislav Stojanovic ◽  
Mladen Stojiljkovic ◽  
Jelena Janevski ◽  
Milica Stojanovic

Heavy mass materials used in building structures and architecture can significantly affect building energy performance and occupant comfort. The purpose of this study was to investigate if thermal mass can improve the internal environment of a building, resulting in lower energy requirements from the mechanical systems. The study was focused on passive building energy performance and compared annual space heating and cooling energy requirements for an office building in Belgrade with several different applications of thermal mass. A three-dimensional building model was generated to represent a typical office building. Building shape, orientation, glazing to wall ratio, envelope insulation thickness, and indoor design conditions were held constant while location and thickness of building mass (concrete) was varied between cases in a series of energy simulations. The results were compared and discussed in terms of the building space heating and cooling energy and demand affected by thermal mass. The simulation results indicated that with addition of thermal mass to the building envelope and structure: 100% of all simulated cases experienced reduced annual space heating energy requirements, 67% of all simulated cases experienced reduced annual space cooling energy requirements, 83% of all simulated cases experienced reduced peak space heating demand and 50% of all simulated cases experienced reduced peak space cooling demand. The study demonstrated that there exists a potential for reducing space heating and cooling energy requirements with heavy mass construction in the analyzed climate region (Belgrade, Serbia).


2013 ◽  
Vol 281 ◽  
pp. 649-652 ◽  
Author(s):  
Dae Kyo Jung ◽  
Dong Hwan Lee ◽  
Joo Ho Shin ◽  
Byung Hun Song ◽  
Seung Hee Park

Recently, the interest in increasing energy efficiency of building energy management system (BEMS) has become a high-priority and thus the related studies also increased. In particular, since the energy consumption in terms of heating and cooling system takes a large portion of the energy consumed in buildings, it is strongly required to enhance the energy efficiency through intelligent operation and/or management of HVAC (Heating, Ventilation and Air Conditioning) system. To tackle this issue, this study deals with the BIM (Building Information Modeling)-based energy performance analysis implemented in Energyplus. The BIM model constructed at Revit is updated at Design Builder, adding HVAC models and converted compatibly with the Energyplus environment. And then, the HVAC models are modified throughout the comparison between the energy consumption patterns and the real-time monitoring in-field data. In order to maximize the building energy performance, a genetic algorithm (GA)-based optimization technique is applied to the modified HVAC models. Throughout the proposed building energy simulation, finally, the best optimized HVAC control schedule for the target building can be obtained in the form of “supply air temperature schedule”.


2021 ◽  
Vol 312 ◽  
pp. 06003
Author(s):  
Franz Bianco Mauthe Degerfeld ◽  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Vincenzo Corrado

The EN ISO 52016-1 standard presents a new simplified dynamic calculation procedure, whose aim is to provide an accurate energy performance assessment without excessively increasing the number of data required. The Italian National Annex to EN ISO 52016-1, currently under development, provides some improvements to the hourly calculation method; despite many works can be found in literature on the hourly model of EN ISO 52016-1, the National Annexes application has not been sufficiently analysed yet. The aim of the present work is to assess the main improvements introduced by the Italian National Annex and to compare the main results, in terms of energy need for space heating and cooling. To this purpose, an existing building representative of the Italian office building stock in Northern Italy was selected as a case study. The energy simulations were carried out considering both continuous and reduced operation of the HVAC systems. The options specified in the Italian National Annex were firstly applied one by one, and then all together. The variation of the energy need compared to the international base procedure is finally quantified. For the premises and the scope above discussed, the present work is intended to enhance the standardisation activity towards the adoption of more accurate and trustable calculation methods of the building energy performance.


2021 ◽  
Vol 11 (18) ◽  
pp. 8327
Author(s):  
Gabriele Battista ◽  
Marta Roncone ◽  
Emanuele de Lieto Vollaro

It is well known that the construction sector is one of the main sectors responsible for energy consumption in the current global energy scenario. Thus, buildings’ energy software become essential tools for achieving energy savings. Climate and its implications for building energy performance are a critical threat. Hence, the aim of this study is to evaluate the climatic conditions in urban and suburban areas of Rome, estimating the incidence of the Urban Heat Island (UHI) phenomenon. To this end, meteorological data obtained from three different areas (two airports and one inside the city) were examined and compared. Then, TRNSYS software was used to create a simple building, in order to assess the impacts of various climatic situations on building energy performance. The study revealed significant percentage differences both in terms of energy needs for heating, from −20.1% to −24.9% when the reference stations are, respectively, Fiumicino and Ciampino, and for cooling, with a wider range, from +48.7% to +87.5% when the reference stations are Ciampino and Fiumicino. Therefore, the study showed the importance of more accurately selecting sets of climate values to be included in energy simulations.


2018 ◽  
Vol 165 ◽  
pp. 172-183 ◽  
Author(s):  
James Egan ◽  
Donal Finn ◽  
Pedro Henrique Deogene Soares ◽  
Victor Andreas Rocha Baumann ◽  
Reihaneh Aghamolaei ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4107 ◽  
Author(s):  
Giovanni Barone ◽  
Annamaria Buonomano ◽  
Cesare Forzano ◽  
Adolfo Palombo

This paper focuses on the experimental validation of a building energy performance simulation tool by means of a comparative analysis between numerical results and measurements obtained on a real test room. The empirical tests were carried out for several months under variable weather conditions and in free-floating indoor temperature regime (switched off HVAC system). Measurements were exploited for validating an in-house simulation tool, implemented in MatLab and called DETECt, developed for dynamically assessing the energy performance of buildings. Results show that simulated indoor air and surface room temperatures resulted in very good agreement with the corresponding experimental data; the detected differences were often lower than 0.5 °C and almost always lower than 1 °C. Very low mean absolute and percentage errors were always achieved. In order to show the capabilities of the developed simulation tool, a suitable case study focused on innovative solar radiation high-reflective coatings, and infrared low-emissivity materials is also presented. The performance of these coatings and materials was investigated through a comparative analysis conducted to evaluate their heating and cooling energy saving potentials. Simulation results, obtained for the real test cell considered as equipped with such innovative coatings and material, show that for the weather zone of Naples a 5% saving is obtained both in summer and in winter by simultaneously adopting a high-reflectance coating and a low- emissivity plaster for roof/external walls and interior walls, respectively.


Author(s):  
James P. Miller ◽  
Michael Deru ◽  
Kyle Benne ◽  
Alexander Zhivov ◽  
Dale Herron

Rising energy costs and the desire to reduce energy consumption dictates a need for significantly improved building energy performance. Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems (DOAS), radiant heating and cooling systems and tighter building envelopes. Although individually applying innovative technologies may incrementally improve building energy performance, more significant payoffs are realized when compatible technologies are integrated into an optimized system. Fortunately, DOAS, radiant heating and cooling systems and improved building envelopes are highly compatible. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations. The baseline facilities were assumed to be existing buildings with VAV HVAC systems (admin facilities) and packaged HVAC systems (barracks facilities). The energy simulations were adjusted for each location for optimal energy and humidity control performance. The results show that the upgraded facilities realized total building energy savings between 20% and 40% and improved humidity control when compared to baseline building performance.


Sign in / Sign up

Export Citation Format

Share Document