scholarly journals Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7129
Author(s):  
Ana Rita Nunes ◽  
Hugo Morais ◽  
Alberto Sardinha

The main goal of this paper is to review and evaluate how we can take advantage of state-of-the-art machine learning techniques and apply them in wind energy operation conditions monitoring and fault diagnosis, boosting wind turbines’ availability. To accomplish this, we focus our work on analysing the current techniques in predictive maintenance, which are aimed at acting before a major failure occurs using condition monitoring. In particular, we start framing the predictive maintenance problem as an ML problem to detect patterns that indicate a fault on turbine generators. Then, we extend the problem to detect future faults. Therefore, this review will consist of analysing techniques to tackle the challenges of each machine learning stage, such as data pre-processing, feature engineering, and the selection of the best-suited model. By using specific evaluation metrics, the expected final result of using these techniques will be an improvement in the early prediction of a future fault. This improvement will have an increase in the availability of the turbine, and therefore in energy production.

Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


Recent research in computational engineering have evidenced the design and development numerous intelligent models to analyze medical data and derive inferences related to early diagnosis and prediction of disease severity. In this context, prediction and diagnosis of fatal neurodegenerative diseases that comes under the class of dementia from medical image data is considered as the challenging area of research for many researchers. Recently Alzheimer’s disease is considered as major category of dementia that affects major population. Despite of the development of numerous machine learning models for early diagnosis of Alzheimer’s disease, it is observed that there is a lot more scope of research. Addressing the same, this article presents a systematic literature review of machine learning techniques developed for early diagnosis of Alzheimer’s disease. Furthermore this article includes major categories of machine learning algorithms that include artificial neural networks, Support vector machines and Deep learning based ensemble models that helps the budding researchers to explore the scope of research in predicting Alzheimer’s disease. Implementation results depict the comparative analysis of state of art machine learning mechanisms.


2020 ◽  
Author(s):  
Vinayak Tyagi ◽  
Uday Chourasia ◽  
Priyanka Dixit ◽  
Alpana Pandey ◽  
Arundhati Arjaria

Author(s):  
Fabio De Felice ◽  
Marta Travaglioni ◽  
Giuseppina Piscitelli ◽  
Raffaele Cioffi ◽  
Antonella Petrillo

With the Industry 4.0 (I4.0) beginning, the world is witnessing an important technological development. The success of I4.0 is linked to the implementation of enabling technologies, including Machine Learning, which focuses on the machines’ ability to receive a series of data and learn on their own. The present research aims to systematically analyze the existing literature on the subject in various aspects, including publication year, authors, scientific sector, country, institution and keywords. Understanding and analyzing the existing literature on Machine Learning applied to predictive maintenance is preparatory to recommend policy on the subject.


Author(s):  
Naman S. Bajaj ◽  
Abhishek D. Patange ◽  
R. Jegadeeshwaran ◽  
Kaushal A. Kulkarni ◽  
Rohan S. Ghatpande ◽  
...  

Abstract With the advent of Industry 4.0, which conceptualizes self-monitoring of rotating machine parts by adopting techniques like Artificial Intelligence (AI), Machine Learning (ML), Internet of Things (IoT), data analytics, cloud computing, etc. The significant research area in predictive maintenance is Tool Condition Monitoring (TCM) as the tool condition affects the overall machining process and its economics. Lately, machine learning techniques are being used to classify the tool's condition in operation. These techniques are cost-saving and help industries with adopting future-proof solutions for their operations. One such technique called Discriminant analysis (DA) must be examined particularly for TCM. Owing to its less expensive computation and shorter run times, using them in TCM will ensure effective use of the cutting tool and reduce maintenance times. This paper presents a Bayesian optimized discriminant analysis model to classify and monitor the tool condition into three user-defined classes. The data is collected using an in-house designed and developed Data Acquisition (DAQ) module set up on a Vertical Machining Center (VMC). The hyperparameter tuning has been incorporated using Bayesian optimization search, and the parameter which gives the best model was found out to be ‘Linear’, achieving an accuracy of 93.3%. This work confirms the feasibility of machine learning techniques like DA in the field of TCM and using Bayesian optimization algorithms to fine-tune the model, making it industry-ready.


2021 ◽  
Author(s):  
Lauren Flores ◽  
Martin Morles ◽  
Cheng Chen

Abstract New water treatment facilities in the Gulf of Mexico include a seawater Sulfate Removal Unit (SRU) to mitigate reservoir souring and scaling. The general industry sulfate target for offshore SRU is usually 20 mg/L or even 40 mg/L; however, some facilities may require <10 mg/L of sulfate in injection water, which makes water quality monitoring more critical and challenging. Current industrial practice relies on only pressure drop and a constant cleaning interval frequency to perform SRU maintenance which may result in reduced membrane life due to frequency cleaning or severe membrane fouling without the capability to predict fouling based on process conditions. The machine learning techniques applied will fill the gap and deliver a prediction model based on both simulation and real-time field data. This model will track and monitor the system key performance indicators (KPIs) including pressure, membrane fouling factor (FF), permeate sulfate concentration etc. The monitoring and prediction of these KPIs provide estimates on when the next maintenance procedure is required, track membrane system status for troubleshooting and actions, and optimize membrane performance by tuning operation conditions.


Sign in / Sign up

Export Citation Format

Share Document