scholarly journals Comprehensive Evaluation of a Landscape Fabric Based Solar Air Heater in a Pig Nursery

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7258
Author(s):  
Li Yu ◽  
Sanjay B. Shah ◽  
Mark T. Knauer ◽  
Michael D. Boyette ◽  
Larry F. Stikeleather

Supplementing fossil fuels with solar air tempering for brooding young livestock could reduce energy use and improve indoor air quality. Metal transpired solar collectors (TSC) are effective but too expensive for heating livestock buildings. An inexpensive 12.7 m2 dark grey landscape-fabric-based transpired solar collector (fTSC) was evaluated in a swine nursery with two herds of pigs. A fraction of the fTSC area was underlain with phase change material (PCM) to store excess heat. The Test room with the fTSC was compared with an adjacent identical Control room, each with 120 piglets. The fTSC provided supplemental heating, e.g., with a suction velocity (Vs) of 0.027 m/s during a 9 h period, air temperature was increased by 11.6 °C (mean irradiance of 592 W/m2). Between 4 pm and 9 pm that same day, the PCM increased air temperature by 3.9 °C. The fTSC did not reduce propane use or improve pig performance. Higher Vs, operational changes and controller modifications could improve system performance and reduce cost. Modeling could be used to optimize PCM use. Hence, this very low-cost fabric-based solar air heater offers potential for considerable reduction in heat energy use in livestock barns.

2019 ◽  
Vol 25 (2) ◽  
pp. 1-17 ◽  
Author(s):  
Abdulrahman Shakir Mahmood

In this paper, an experimental study was conducted to enhance the thermal performance of a double-pass solar air heater (SAH) using phase change material (PCM) for thermal storage at climatic conditions of Baghdad city - Iraq. The double-pass solar air heater integrated with thermal storage system was manufactured and tested to ensure that the air heating reserved after the absence of the sun. The rectangular cavity filled with paraffin wax was used as a latent heat storage and incorporated into the lower channel of solar air heater. Experiments were carried out to evaluate the charging and discharging characteristics of two similar designed solar air collectors with and without using phase change material at a constant air mass flow rate of (0.0375 kg/sec). The parameters that affect the thermal performance of the SAH with and without the PCMs presented by solar radiation, the difference in air temperature, outlet air temperature, instantaneous thermal efficiency, and daily efficiency are evaluated. The experimental results show that when using the PCM, the temperature of the outlet air was enhanced and increased over the ambient temperature by (1.5 - 6.5 C) after sunset for 5 hours period. It was found that the instantaneous thermal efficiency of the heater using thermal storage exceeds 100% after sunset, this is due to a large amount of heat stored in the paraffin wax that has been released during the discharge process. Also, it was found that the daily efficiency of the double pass SAH integrated with and without thermal energy storage unit was (56, 47%) respectively.  


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6399
Author(s):  
Nguyen Minh Phu ◽  
Ngo Thien Tu ◽  
Nguyen Van Hap

In this paper, a triple-pass solar air heater with three inlets is analytically investigated. The effects of airflow ratios of the second and third passes (ranging from 0 to 0.4), and the Reynolds number of the third pass (ranging from 8000 to 18,000) on the thermohydraulic efficiency and entropy generation are assessed. An absorber plate equipped with rectangular fins on both sides is used to enhance heat transfer. The air temperature change in the passes is represented by ordinary differential equations and solved by numerical integration. The results demonstrate that the effect of the third pass airflow ratio on the thermohydraulic efficiency and entropy generation is more significant than that of the second pass airflow ratio. The difference in air temperature through the collector shows an insignificant reduction, but the air pressure loss is only 50% compared with that of a traditional triple-pass solar air heater. Increasing the air flow ratios dramatically reduces entropy generation. Multi-objective optimization found a Reynolds number of 11,156 for both the airflow ratio of the second pass of 0.258 and airflow ratio of the third pass of 0.036 to be the an optimal value to achieve maximum thermohydraulic efficiency and minimum entropy generation.


2014 ◽  
Vol 493 ◽  
pp. 86-92 ◽  
Author(s):  
Ekadewi A. Handoyo ◽  
Djatmiko Ichsani ◽  
Prabowo ◽  
S. Sutardi

A solar air heater (SAH) is a simple heater using solar radiation that is useful for drying or space heating. Unfortunately, heat transfer from the absorber plate to the air inside the solar air heater is low. Some researchers reported that obstacles are able to improve the heat transfer in a flat plate solar air collector and others found that a v-corrugated absorber plate gives better heat transfer than a flat plate. Yet, no work of combining these two findings is found.This paper describes the result of experimental study on a SAH with v-corrugated absorber plate and obstacles bent vertically started from 80oto 0owith interval 10oon its bottom plate. Experiments were conducted indoor at five different Reynolds numbers (1447 Re 7237) and three different radiation intensities (430, 573, and 716 W/m2).It is found that the obstacles improve SAH performance. Both the air temperature rise and efficiency increase with inserting obstacles bent at any angle vertically. Unfortunately, the air pressure drop is increasing, too. Obstacles bent vertically at smaller angle (means more straight) give higher air temperature rise and efficiency. However, the optimum angle is found 30o. The air temperature rise and efficiency will be 5.3% lower when the obstacles bent 30oinstead of 0o, but the pressure drop will be 17.2% lower.


2021 ◽  
pp. 345-345
Author(s):  
Kumar Varun ◽  
G. Manikandan ◽  
Kanna Rajesh ◽  
Venkata Poluru

Heat transfer enhancement in Solar Air Heater (SAH) has been investigated by implementing rough surfaces in the absorber plate. We use paraffin wax is used as Phase Change Material (PCM) integrated with SAH as a Thermal Energy Storage (TES) system. A maximum convective heat transfer is attained during the daytime and retained as latent heat (LH) to discharge heat during OFF radiation. In this investigation, two types of absorber plates were employed such as flat & polygonal-shaped ribs at the test section. Further to investigate the heat transfer enhancement, the research was conducted with and without PCM. The study was carried out at the mass flow rates of 0.062 kg/s, 0.028 kg/s, and 0.01 kg/s to ascertain the enhancement of thermal efficiency and heat discharge duration. The temperatures of absorber plate Tp, ambient Tamb, outlet Tout and PCM along with Solar Intensity I (W/m-2) were taken as the main parameters. The research reveals that the absorber plate with polygonal ribs tested with PCM yields a higher temperature of 77?C with a mass flow rate of 0.062 kg/s during peak radiation. And discharged heat energy from PCM to absorber plate for 3.5 hours with a maximum temperature of 7.1?C.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3772
Author(s):  
Deger Saygin ◽  
Dolf Gielen

The chemical and petrochemical sector relies on fossil fuels and feedstocks, and is a major source of carbon dioxide (CO2) emissions. The techno-economic potential of 20 decarbonisation options is assessed. While previous analyses focus on the production processes, this analysis covers the full product life cycle CO2 emissions. The analysis elaborates the carbon accounting complexity that results from the non-energy use of fossil fuels, and highlights the importance of strategies that consider the carbon stored in synthetic organic products—an aspect that warrants more attention in long-term energy scenarios and strategies. Average mitigation costs in the sector would amount to 64 United States dollars (USD) per tonne of CO2 for full decarbonisation in 2050. The rapidly declining renewables cost is one main cause for this low-cost estimate. Renewable energy supply solutions, in combination with electrification, account for 40% of total emissions reductions. Annual biomass use grows to 1.3 gigatonnes; green hydrogen electrolyser capacity grows to 2435 gigawatts and recycling rates increase six-fold, while product demand is reduced by a third, compared to the reference case. CO2 capture, storage and use equals 30% of the total decarbonisation effort (1.49 gigatonnes per year), where about one-third of the captured CO2 is of biogenic origin. Circular economy concepts, including recycling, account for 16%, while energy efficiency accounts for 12% of the decarbonisation needed. Achieving full decarbonisation in this sector will increase energy and feedstock costs by more than 35%. The analysis shows the importance of renewables-based solutions, accounting for more than half of the total emissions reduction potential, which was higher than previous estimates.


2014 ◽  
Vol 39 (2) ◽  
pp. 57-68
Author(s):  
Rodrigo Garcia Alvarado ◽  
Jaime Soto ◽  
Cristian Muñoz ◽  
Ariel Bobadilla ◽  
Rodrigo Herrera ◽  
...  

The current depletion of fossil fuels and environmental degradation are requiring greater energy efficiency in buildings, particularly in the residential sector. However, environmental improvement actions for dwellings are usually based on general considerations, without identifying the most appropriate measurements to be taken in each case, or reviewing their application with stakeholders. This article puts forward a strategy to propose effective and feasible modifications in the design or refurbishment of single-family homes to reduce energy use while maintaining indoor comfort. The improvements proposed are based on dynamic energy simulations of individual models adapted to local realities that can be carried out by regular professionals. The process includes the review of studies and information on the geographic area, and compilation of the constructive features and occupancy data of each house to create a proper energy behaviour model. Possible improvements to the building are then simulated separately in each model and the results recorded. Subsequently, a budgetary analysis of these alternatives according to construction costs and financial projections is carried out in order to identify retrofit packages and consult the opinions of residents and builders. The application of this strategy is demonstrated in the study of several houses in Concepción, Chile, where different sets of measures have been identified to achieve high reductions in energy demand while having low cost and being highly appreciated by the participants. This provides a methodology for developing and validating effective solutions for the environmental improvement of existing dwellings and new housing projects.


Sign in / Sign up

Export Citation Format

Share Document