scholarly journals Comparison Study on High Force Density Linear Motors for Compressor Application

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7417
Author(s):  
Fei Zhao ◽  
Yunshuai Jiang ◽  
Kuang Yang ◽  
Chengming Zhang ◽  
Wei Lian ◽  
...  

This paper presents the modular topologies of the dual-stator dual-winding permanent magnet (PM) linear motors for linear compressors used in the electrified transportation application. Compared to the conventional PM linear motor in compressor, the proposed modular model is designed with the same volume but a higher thrust force density and a further higher air pressure in air cylinder, which are competitive in the compressor industry. The proposed compact PM linear motors are constructed with tubular windings in both inner and outer stators, as well as the ring-type magnet in mover. Simulation results of motor characteristics are compared by three-dimensional finite element method (3D FEM). Finally, the prototypes of the proposed PM linear motors are manufactured and tested for the linear compressor application.

2011 ◽  
Vol 413 ◽  
pp. 166-169 ◽  
Author(s):  
Jin Xing Lai ◽  
Chi Liu ◽  
Fei Zhou

In order to analyze the stability of the tunnel construction of the fault fracture zone, by adopting the three-dimensional finite element, the paper analyzed the construction process of the Qingshashan Tunnel passing through the F5 fault fracture zone, and the rules and characteristics of deformation, stress distribution and its rules of changes, and the distribution range of the failure zone of the surrounding rock in the construction process, which would have important significance in guiding tunnel construction. Studies have shown that the three-dimensional finite element has a broad application prospect in tunnel projects.


Author(s):  
Kouitsu Miyachika ◽  
Satoshi Oda ◽  
Hiroshige Fujio

Abstract This paper presents a study on effects of the case depth, the case-hardened part, the face width, the rim thickness and the standard pressure angle on residual stresses of case-hardened gears. A heat conduction analysis and an elastic-plastic stress analysis for the case-hardening process of spur gears were carried out by the three-dimensional finite-element method (3D-FEM), and then residual stresses were obtained. It was found that the compressive residual stress σ*θ = 30° at Hofer’s critical section of the end of the face width is smaller in magnitude than that of the middle of the face width, and that the absolute value of σ*θ = 30° of the middle of the face width decreases owing to case-hardening the gear-side and the decreasing rate increases with an increasing case depth and a decreasing face width.


2009 ◽  
Vol 79-82 ◽  
pp. 1269-1272
Author(s):  
Wei Chen ◽  
Bao Xiang Wang ◽  
Yu Zhu Zhang ◽  
Jin Hong Ma ◽  
Su Juan Yuan

In this paper, a three-dimensional finite element model is developed to simulate and analyze the turbulent flow in the mould of billet continuous casting. The result shows that if the SEN is used in the continuous casting process, there exists a symmetrical stronger vortex in the middle of the mould and a weaker vortex above the nozzle. The casting speed, the depth and diameter of SEN all have significant effect on the fluid flow field and the turbulent kinetic energy on the meniscus, and then have effect on the billet quality. At the given conditions, the optimum set of parameters is: the casting speed 0.035 , the depth of the SEN 0.1 , the diameter of the SEN 0.025 . Online verifying of this model has been developed, which can be proved that it is very useful to control the steel quality and improve the productivity.


2018 ◽  
Vol 16 (1) ◽  
pp. 516-519
Author(s):  
Arzu Turan Dincel ◽  
Surkay D. Akbarov

AbstractAn investigation into the values of the Energy Release Rate (ERR) at the band crack’s front in the rectangular plate made of multilayered composite material is carried out for the opening mode. The corresponding boundary-value problem is modelled by using threedimensional linear theory and solved numerically by using 3D FEM (Three Dimensional Finite Element Method). The main purpose of the current investigation is to study the influence of mechanical and geometrical parameters on the Energy Release Rate (ERR) at this crack front. The numerical results related to the ERR, and the effect of the mechanical and other problem parameters on the ERR are presented and discussed.


2018 ◽  
Vol 876 ◽  
pp. 138-146
Author(s):  
Aswin Yodrux ◽  
Nantakrit Yodpijit ◽  
Manutchanok Jongprasithporn

This paper presents the use of Three-Dimensional Finite Element Method (3D-FEM) for biomechanical analysis on dental implant prosthetics. This research focuses on three patents of threads of dental implant systems from United States Patent and Trademark Office (USPTO) and two new conceptual design models. The three-dimensional finite element analysis is performed on dental implant models, with compressive forces of 50, 100, and 150 N, and a shear force of 20 N with the force angle of 60 degrees with the normal line respectively. The Stress and displacement analysis is conducted at four different areas (abutment, implant, cortical bone, and cancellous bone). Findings from this research provide guidelines for new product design of dental implant prosthetics with stress distribution and displacement characteristics.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 157-163
Author(s):  
Koki Ito ◽  
Takahisa Kadomatsu ◽  
Kohei Obana ◽  
Kenji Nakamura

This paper deals with development of in-wheel magnetic-geared motor for walking support machines. In a previous paper, a magnetic-geared motor for a walking support machine was prototyped. However, its efficiency was low, therefore improving the efficiency is necessary for practical use. This paper presents the improving efficiency of the magnetic-geared motor from the viewpoint of torque increasing and loss reducing by using a three-dimensional finite element method (3D-FEM). In addition, supporting method of pole-pieces and eddy current loss in housing were discussed. Furthermore, the proposed motor is prototyped. The experimental results show that its efficiency is 15% higher than the previous motor. Finally, the walking support machine installed with two magnetic-geared motors is prototyped and demonstrated.


2011 ◽  
Vol 86 ◽  
pp. 43-46 ◽  
Author(s):  
Shu Ting Li

A new silk-hat type of harmonic drive device (HDD) with arc flexspline (FS) structure is developed. Loaded gear contact analysis (LGCA) and stress calculations are made for it with three-dimensional, finite element method (3D-FEM). Basic performances and strengths tests are also made. It is found that the new structure almost has the same performances and strength as the old one.


Sign in / Sign up

Export Citation Format

Share Document