scholarly journals Evaluation of Thermoelectric Generators under Mismatching Conditions

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8016
Author(s):  
Daniel Sanin-Villa ◽  
Oscar D. Monsalve-Cifuentes ◽  
Elkin E. Henao-Bravo

Due to the wide usability of thermoelectric generators (TEG) in the industry and research fields, it is plausible that mismatching conditions are present on the thermal surfaces of a TEG device, which induces negative-performance effects due to uneven surface temperature distributions. For this reason, the objective of this study is to characterize numerically the open-circuit electric output voltage of a TEG device when a mismatching condition is applied to both the cold and hot sides of the selected N and P-type semiconductor material Bi0.4Sb1.6Te3. A validated numerical simulation paired with a parametric study is conducted using the Thermal-Electric module of ANSYS 2020 R1, for which different thermal boundary and mismatching conditions are applied while considering the temperature-dependent thermoelectrical properties of the N and P-type material. The results show an inverse relationship between the open-circuit voltage and the mismatching temperature difference. When a mismatching condition is applied on the hot side of the TEG device, the temperature-dependent electrical resistance has lower values, deriving in higher voltage results (linear tendency) compared to a mismatching condition applied to the cold side (non-linear tendency).

2015 ◽  
Vol 5 (6) ◽  
pp. 1757-1761 ◽  
Author(s):  
Daniel Amkreutz ◽  
William D. Barker ◽  
Sven Kuhnapfel ◽  
Paul Sonntag ◽  
Onno Gabriel ◽  
...  

2009 ◽  
Vol 48 (24) ◽  
pp. 4402-4405 ◽  
Author(s):  
Elizabeth A. Gibson ◽  
Amanda L. Smeigh ◽  
Loïc Le Pleux ◽  
Jérôme Fortage ◽  
Gerrit Boschloo ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
Ting Zhao ◽  
Kewen Li ◽  
Yuhao Zhu ◽  
Lin Jia ◽  
Xiaoyong Hou ◽  
...  

Abstract Thermoelectric generators (TEG) are widely used in many industries. The voltage and output power of TEG chips are critical indicators to evaluate the performance of TEGs. The conventional method is to directly test the output voltage and power of the whole TEG chip that contains 127 pairs of PN (P- and N-type) legs (127-PN-TEG). However, the assembling of these PN legs is very time-consuming. In order to reduce experimental time and the consumption of TEG materials, we proposed an experimental method. We developed the test apparatus for the rapid evaluation of TEG performance using a TEG chip with a single pair of PN legs (1-PN-TEG). We made several 1-PN-TEGs and 127-PN-TEGs using the same thermoelectric material (bismuth telluride). We then measured the voltage and the power of these 1-PN-TEGs and 127-PN-TEGs, respectively. The experimental results were compared and analyzed. The comparison showed that the voltage of 127-PN-TEG is equal to the voltage of 1-PN-TEG times 127, which implies that we could use the test data of 1-PN-TEG to evaluate the performance of 127-PN-TEG. Using the experimental device developed in this paper, we also studied the effects of the PN leg area (cross-sectional area of PN legs) and the pressure applied over the TEGs on the output power of 1-PN-TEG. The experimental results showed that the power per unit area decreases with an increase in the 1-PN-TEG's PN leg area when the temperature difference between the hot and cold sides was constant. Under a specific temperature difference conditions, the open-circuit voltage and the output power will increase with the pressure applied on the TEG chips.


2005 ◽  
Vol 865 ◽  
Author(s):  
Akimasa Yamada ◽  
Koji Matsubara ◽  
Keiichiro Sakurai ◽  
Shogo Ishizuka ◽  
Hitoshi Tampo Hajime ◽  
...  

AbstractThe reasons why the open circuit voltage (Voc) of high-x CuIn1-xGaxSe2 (CIGS)/ZnO solar cells remain low are discussed. Here it is shown that the Voc ceiling can be interpreted simply on the basis of a model that the valence-band energy (Ev) of CIGS is almost immovable irrespective of x. When the conduction-band energy (Ec) of ZnO is lower than that of high-x CIGS (DEc<0), the built-in potential (Vbi) of a CIGS/ZnO junction is equivalent to the flat-band potential (Vbi) that arises from the separation between the Fermi energies of the two materials. If the Ev (and therefore the Fermi energy) of p-type CIGS is constant with increasing x, the Vbi and Voc that follows the Vbi remain unchanged since the Fermi energy of ZnO is constant. This unchangeable Voc reduces the conversion efficiency of high-x CIGS cells in cooperation with reduced photocurrents due to a larger bandgap. A positive offset, ΔEc>o gives rise to a photoelectrons barrier in the conduction-band that partially cancels Voc, thus the Voc of a low-x CIGS cell is governed by the Ec of CIGS. Based upon this concept, a material selection guideline is given for the windows and transparent electrodes appropriate for high-x CIGS absorbers-based solar cells.


2009 ◽  
Vol 1154 ◽  
Author(s):  
Hideyuki Murata ◽  
Yoshiki Kinoshita ◽  
Yoshihiro Kanai ◽  
Toshinori Matsushima ◽  
Yuya Ishii

AbstractWe report the increase in open-circuit voltage (Voc) by inserting of MoO3 layer on ITO substrate to improve built-in potential of organic solar cells (OSCs). In the OSCs using 5,10,15,20-tetraphenylporphyrine (H2TPP) as a p-type material and C60 as a n-type material, the Voc effectively increased from 0.57 to 0.97 V as increasing MoO3 thickness. The obtained highest Voc (0.97 V) is consistent with the theoretical value estimated from the energy difference between the LUMO (−4.50 eV) of C60 and the HOMO (−5.50 eV) of H2TPP layer. Importantly, the enhancement in the Voc was achieved without affecting the short-circuit current density (Jsc) and the fill-factor (FF). Thus, the power conversion efficiency of the device linearly increased from 1.24% to 1.88%. We also demonstrated that a MoO3 buffer layer enhances the stability of OSCs after photo-irradiation. We have investigated the stability of OSCs using H2TPP and N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine as a p-type layer. The both devices with MoO3 layer showed improved stability. These results clearly suggest that the interface at ITO/p-type layer affects the device stability.


2019 ◽  
Vol 3 (1) ◽  
pp. 96-100 ◽  
Author(s):  
Tijmen M. A. Bakker ◽  
Simon Mathew ◽  
Joost N. H. Reek

The development of new redox couples provides a clear strategy to improve power conversion efficiency (PCE) in p-type dye-sensitized solar cells (p-DSSCs) through enabling improvements in open-circuit voltage (VOC).


Solar Energy ◽  
2020 ◽  
Vol 207 ◽  
pp. 436-440
Author(s):  
Yajun Xu ◽  
Honglie Shen ◽  
Zhi Yang ◽  
Qingzhu Wei ◽  
Zhichun Ni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document