scholarly journals A Linear Hybrid Concentrated Photovoltaic Solar Collector: A Methodology Proposal of Optical and Thermal Analysis

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8155
Author(s):  
Eduardo Venegas-Reyes ◽  
Naghelli Ortega-Avila ◽  
Manuel I. Peña-Cruz ◽  
Omar J. García-Ortiz ◽  
Norma A. Rodríguez-Muñoz

The photovoltaic cell surface in linear hybrid concentrated solar collectors receives non-uniform radiative flux, causing additional thermal stress due to hot spots and reducing its electrical performance and durability. The current study proposes a parametric methodology to determine the optimal receiver displacement required in a linear Cassegrain-type hybrid solar collector. The aim was to achieve a minimal non-uniformity distribution and a high radiative flux over the photovoltaic cells, considering optical errors close to real environment conditions and analyzing the heat transfer to determine the electrical and thermal efficiencies. The developed methodology was applied to analyze a case study with a receiver width of 0.125 m and rim angle of 80° and using a commercial silicon photovoltaic cell that supports up to 7000 W/m2. After applying the methodology, a hybrid solar collector with a concentration ratio of 13.0 and receiver displacement of 0.14 m is recommended. As a result, 5728 W/m2 of average radiative flux with non-uniformity lower than 4% was achieved. Thus, thanks to the proposed configuration, a low non-uniformity and high radiative flux were achieved, benefiting the photovoltaic cells’ life while improving their operation.

Author(s):  
Catalina Gonzalez ◽  
Jinny Rhee

The motivation for this study comes from the need for a clean, renewable energy source, which is greater now more than ever to reduce the country’s dependence on fossil fuels. Cogenerating solar systems can provide heat and electricity for many industrial applications such as power generation and absorption refrigeration systems. For example, data centers that run on conventional refrigeration systems are one of the largest electricity consumers in the nation, accounting for 1.2% of the total electricity consumption in 2005. This electricity consumption, almost half of which is used to run the data center’s air conditioning units, translates to $2.7 billion in electricity costs for that year. Using cogenerating solar systems for these types of applications could represent a significant amount of savings in electricity costs. The objective of this paper is to numerically optimize a receiver for a cogenerating photovoltaic and thermal parabolic solar collector that will produce both heat and electricity. The solar cogeneration system studied will convert solar energy into both heat and electricity by using a combination of photovoltaic cells, a parabolic trough thermal collector, and water as the liquid heat exchanger on the photovoltaic cells. The peak electrical efficiency of the multi-junction gallium arsenide Spectrolab photovoltaic cells used in this study is about 32%, with the rest of the solar energy being absorbed as heat. These temperature gains in the cells can lead to a decrease in efficiency. However, in cogenerating systems, water is used as a working fluid to remove heat from the photovoltaic cells, thus aiding in increasing the electrical efficiency of the photovoltaic system as well as increasing the thermal energy gained from the solar thermal collector. The numerical analysis for this project will use Flotherm, a CFD tool used to solve fluid and thermal problems. A single-phase water cooled square duct receiver subjected to non-uniform heating will be analyzed in Flotherm to determine the optimal parameters for the best convection heat transfer between the working fluid and the photovoltaic cells. To enhance the heat transfer between photovoltaic cells and working fluid, the inner surface of the receiver tube receiving the heat flux will be improved by adding fins to increase heat transfer and induce turbulent flow. The initial receiver design will be compared with other receivers to determine the optimal design. Results will be presented parametrically for a range of flow rates and receiver geometry.


2020 ◽  
Vol 22 (4) ◽  
pp. 1111-1120
Author(s):  
Ahmed Reteri ◽  
Hind Saib ◽  
Zahra Chib

AbstractA thermal photovoltaic hybrid collector enables simultaneous electrical conversion of the solar radiation and recovery of heat absorbed by the cell. This energy cogeneration obviously yields the use of such systems which are very interesting in various fields. During the actual operation of the photovoltaic modules, the experimental characterization shows that the electrical efficiency decreases significantly with increasing temperature of the photovoltaic cells exposed to the sun. Our work focuses on an experimental study carried out in thermal transfer laboratory at the Faculty of Technology of the Tlemcen University, in order to analyze the effect of cell temperature, glazing on electrical performance, also the effect of the cooling of this cell.


2020 ◽  
Vol 4 (41) ◽  
pp. 51-56
Author(s):  
DMITRIY STREBKOV ◽  
◽  
NATAL’YA FILIPPCHENKOVA ◽  

In the field of energy supply to agro-industrial facilities, there is an increasing interest in the development of structures and engineering systems using renewable energy sources, including solar concentrator thermal and photovoltaic modules that combine photovoltaic modules and solar collectors in one structure. The use of the technology of concentrator heat and photovoltaic modules makes it possible to increase the electrical performance of solar cells by cooling them during operation, and significantly reduces the need for centralized electricity and heat supply to enterprises of the agroindustrial complex. (Research purpose) The research purpose is in numerical modeling of thermal processes occurring in a solar concentrator heat-photovoltaic module. (Materials and methods) Authors used analytical methods for mathematical modeling of a solar concentrator heat and photovoltaic module. Authors implemented a mathematical model of a solar concentrator heat and photovoltaic module in the ANSYS Fluent computer program. The distribution contours of temperature and pressure of the coolant in the module channel were obtained for different values of the coolant flow rate at the inlet. The verification of the developed model of the module on the basis of data obtained in an analytical way has been performed. (Results and discussion) The results of comparing the calculated data with the results of computer modeling show a high convergence of the information obtained with the use of a computer model, the relative error is within acceptable limits. (Conclusions) The developed design of the solar concentrator heat and photovoltaic module provides effective cooling of photovoltaic cells (the temperature of photovoltaic cells is in the operating range) with a module service life of at least twenty-five years. The use of a louvered heliostat in the developed design of a solar concentrator heat and photovoltaic module can double the performance of the concentrator.


2021 ◽  
Vol 1845 (1) ◽  
pp. 012081
Author(s):  
Y Baskoro ◽  
I Jaya ◽  
A Glowacz ◽  
M Sulowicz ◽  
W Caesarendra

2013 ◽  
Vol 59 (4) ◽  
pp. 483-497 ◽  
Author(s):  
D. Prakash ◽  
P. Ravikumar

Abstract In this paper, transient analysis on heat transfer across the residential building roof having various materials like wood wool, phase change material and weathering tile is performed by numerical simulation technique. 2-dimensional roof model is created, checked for grid independency and validated with the experimental results. Three different roof structures are included in this study namely roof with (i). Concrete and weathering tile, (ii). Concrete, phase change material and weathering tile and (iii). Concrete, phase change material, wood wool and weathering tile. Roof type 3 restricts 13% of heat entering the room in comparison with roof having only concrete and weathering tile. Also the effect of various roof layers’ thickness in the roof type 3 is investigated and identified that the wood wool plays the major role in arresting the entry of heat in to the room. The average reduction of heat is about 10 % for an increase of a unit thickness of wood wool layer.


Sign in / Sign up

Export Citation Format

Share Document