scholarly journals Comparing 2D and 3D Solar Radiation Modeling in Urban Areas

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8364
Author(s):  
Štefan Kolečanský ◽  
Jaroslav Hofierka ◽  
Jozef Bogľarský ◽  
Jozef Šupinský

The use of solar radiation in the urban environment is becoming increasingly important for the sustainable development of cities and human societies. Several factors influence the distribution of solar radiation in urban areas, including urban morphology and the physical properties of urban materials. Most of these factors can be modeled with a relatively high accuracy using 2D and 3D solar radiation models. In this paper, the r.sun and v.sun solar radiation models are used to calculate solar radiation for the city of Košice in Eastern Slovakia to assess the accuracy of both approaches for vertical surfaces frequently found in urban areas. The results were validated by pyranometer measurements. The results showed relatively good estimates by the 3D v.sun model and poor estimates by the 2D r.sun model. This can be attributed to an improper representation of vertical surfaces by a digital surface model, which has a strong impact on solar resource assessments. We found that 3D city models prepared in level of detail 2 (LoD2) are not always adequate in case of complex buildings with morphological structures, such as terraces. These cast shadows on facades especially when solar altitude is high and, thus, assessments, even by a 3D model, are inaccurate.

2020 ◽  
Vol 9 (9) ◽  
pp. 534
Author(s):  
Jaroslav Hofierka ◽  
Jozef Bogľarský ◽  
Štefan Kolečanský ◽  
Anastasia Enderova

Land surface temperature (LST) in urban areas is a dynamic phenomenon affected by various factors such as solar irradiance, cloudiness, wind or urban morphology. The problem complexity requires a comprehensive geographic information system (GIS)-based approach. Our solution is based on solar radiation tools, a high-resolution digital surface model of urban areas, spatially distributed data representing thermal properties of urban surfaces and meteorological conditions. The methodology is implemented in GRASS GIS using shell scripts. In these shell scripts, the r.sun solar radiation model was used to calculate the effective solar irradiance for selected time horizons during the day. The calculation accounts for attenuation of beam solar irradiance by clouds estimated by field measurements. The suggested algorithm accounts for heat storage in urban structures depending on their thermal properties and geometric configuration. Computed land surface temperature was validated using field measurements of LST in 10 locations within the study area. The study confirmed the applicability of our approach with an acceptable accuracy expressed by the root mean square error of 3.45 K. The proposed approach has the advantage of providing high spatial detail coupled with the flexibility of GIS to evaluate various geometrical and land surface properties for any daytime horizon.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 232
Author(s):  
Jie Zheng ◽  
Lisha Na ◽  
Binglin Liu ◽  
Tiantian Zhang ◽  
Hao Wang

Suburban rural landscape multifunction has received increasing attention from scholars due to its high demand and impact on main urban areas. However, few studies have been focused on suburban rural landscape multifunction because of data constraints. The present study quantified the four landscape services based on ecological service system, i.e., regulating function (RF), provision function (PF), culture function (CF), and support function (SF), determined the interaction through the Spearman correlation coefficient, and ultimately identified the landscape multifunction hotspots and dominant functions through overlay analysis. The result indicated that suburban rural communities have exhibited the characteristics of regional multifunction, and the landscape multifunction hotspots accounted for 64.2%; it should be particularly noted that, among single-function, dual-function, and multifunction hotspots, both support function, and culture function was dominant, while only one case was found in which the regulating function was dominant. Furthermore, all landscape functions other than SF-CF exhibited certain correlations. The study suggests that planning and management should be performed in future in combination with landscape multifunction to ensure the sustainable development of suburban rural communities.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1865
Author(s):  
Bala Bhavya Kausika ◽  
Wilfried G. J. H. M. van Sark

Geographic information system (GIS) based tools have become popular for solar photovoltaic (PV) potential estimations, especially in urban areas. There are readily available tools for the mapping and estimation of solar irradiation that give results with the click of a button. Although these tools capture the complexities of the urban environment, they often miss the more important atmospheric parameters that determine the irradiation and potential estimations. Therefore, validation of these models is necessary for accurate potential energy yield and capacity estimations. This paper demonstrates the calibration and validation of the solar radiation model developed by Fu and Rich, employed within ArcGIS, with a focus on the input atmospheric parameters, diffusivity and transmissivity for the Netherlands. In addition, factors affecting the model’s performance with respect to the resolution of the input data were studied. Data were calibrated using ground measurements from Royal Netherlands Meteorological Institute (KNMI) stations in the Netherlands and validated with the station data from Cabauw. The results show that the default model values of diffusivity and transmissivity lead to substantial underestimation or overestimation of solar insolation. In addition, this paper also shows that calibration can be performed at different time scales depending on the purpose and spatial resolution of the input data.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 483
Author(s):  
Nikola Žižlavská ◽  
Tomáš Mikita ◽  
Zdeněk Patočka

The article is on the effects of woody vegetation growing on the roadside on the temperature of the surface of cycle paths. The main hypothesis of the study is that vegetation has the effect of lowering the temperature of the surroundings in its shadow and thus improves the comfort of users of cycle paths in the summer months. The second hypothesis is to find out which type of road surface is most suitable for the thermal well-being of users. This goal was achieved by measuring the temperature of selected locations on cycle paths with different types of construction surfaces with nearby woody vegetation using a contactless thermometer over several days at regular intervals. The positions of the selected locations were measured using GNSS and the whole locality of interest was photographed using an unmanned aerial vehicle (UAV), or drone, and subsequently a digital surface model (DSM) of the area was created using a Structure from Motion (SfM) algorithm. This model served for the calculation of incident solar radiation during the selected days using the Solar Area Graphics tool with ArcGIS software. Subsequently, the effect of the shade of the surrounding vegetation on the temperature during the day was analysed and statistically evaluated. The results are presented in many graphs and their interpretation used to evaluate the effects of nearby woody vegetation and the type of road surface on the surrounding air temperature and the comfort of users of these routes. The results demonstrate the benefits of using UAVs for the purpose of modelling the course of solar radiation during the day, showing the effect of roadside vegetation on reducing the surface temperature of the earth’s surface and thus confirming the need for planting and maintaining such vegetation.


Author(s):  
Jianhong Fan ◽  
You Mo ◽  
Yunnan Cai ◽  
Yabo Zhao ◽  
Dongchen Su

Resilience of rural communities is becoming increasingly important to contemporary society. In this study we used a quantitative method to measure the resilience regulating ability of rural communities close to urban areas—in Licheng Subdistrict, Guangzhou City, China. The main results are as follows: (1) Rural systems close to urban areas display superior adapting and learning abilities and have a stronger overall resilience strength, the spatial distribution of which is characterized by dispersion in whole and aggregation in part; (2) the resilience of most rural economic subsystems can reach moderate or higher levels with apparent spatial agglomeration, whilst the ecological subsystem resilience and social resilience are generally weaker; the spatial distribution of the former shows a greater regional difference while the latter is in a layered layout; (3) some strategies such as rebuilding a stable ecological pattern, making use of urban resources and cultivating rural subjectivity are proposed on this basis, in order to promote the sustainable development of rural areas and realize rural revitalization. This work also gives suggestion for the creation of appropriate and effective resilience standards specifically targeted for rural community-aiming to achieve the delivery of local sustainability goals.


2021 ◽  
Vol 190 ◽  
pp. 107534
Author(s):  
Zhengtong Li ◽  
Tingzhen Ming ◽  
Shurong Liu ◽  
Chong Peng ◽  
Renaud de Richter ◽  
...  

2021 ◽  
Author(s):  
Gianpaolo Balsamo ◽  
Souhail Boussetta

<p>The ECMWF operational land surface model, based on the Carbon-Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL) is the baseline for global weather, climate and environmental applications at ECMWF. In order to expedite its progress and benefit from international collaboration, an ECLand platform has been designed to host advanced and modular schemes. ECLand is paving the way toward a land model that could support a wider range of modelling applications, facilitating global kilometer scales testing as envisaged in the Copernicus and Destination Earth programmes. This presentation introduces the CHTESSEL and its recent new developments that aims at hosting new research applications.</p><p>These new improvements touch upon different components of the model: (i) vegetation, (ii) snow, (iii) soil hydrology, (iv) open water/lakes (v) rivers and (vi) urban areas. The developments are evaluated separately with either offline simulations or coupled experiments, depending on their level of operational readiness, illustrating the benchmarking criteria for assessing process fidelity with regards to land surface fluxes and reservoirs involved in water-energy-carbon exchange, and within the Earth system prediction framework, as foreseen to enter upcoming ECMWF operational cycles.</p><p>Reference: Souhail Boussetta, Gianpaolo Balsamo*, Anna Agustì-Panareda, Gabriele Arduini, Anton Beljaars, Emanuel Dutra, Glenn Carver, Margarita Choulga, Ioan Hadade, Cinzia Mazzetti, Joaquìn Munõz-Sabater, Joe McNorton, Christel Prudhomme, Patricia De Rosnay, Irina Sandu, Nils Wedi, Dai Yamazaki, Ervin Zsoter, 2021: ECLand: an ECMWF land surface modelling platform, MDPI Atmosphere, (in prep).</p>


2021 ◽  
Vol 87 (4) ◽  
pp. 237-248
Author(s):  
Nahed Osama ◽  
Bisheng Yang ◽  
Yue Ma ◽  
Mohamed Freeshah

The ICE, Cloud and land Elevation Satellite-2 (ICES at-2) can provide new measurements of the Earth's elevations through photon-counting technology. Most research has focused on extracting the ground and the canopy photons in vegetated areas. Yet the extraction of the ground photons from urban areas, where the vegetation is mixed with artificial constructions, has not been fully investigated. This article proposes a new method to estimate the ground surface elevations in urban areas. The ICES at-2 signal photons were detected by the improved Density-Based Spatial Clustering of Applications with Noise algorithm and the Advanced Topographic Laser Altimeter System algorithm. The Advanced Land Observing Satellite-1 PALSAR –derived digital surface model has been utilized to separate the terrain surface from the ICES at-2 data. A set of ground-truth data was used to evaluate the accuracy of these two methods, and the achieved accuracy was up to 2.7 cm, which makes our method effective and accurate in determining the ground elevation in urban scenes.


2015 ◽  
Vol 6 (1) ◽  
pp. 11-17 ◽  
Author(s):  
G. Szabó ◽  
P. Enyedi ◽  
Gy. Szabó ◽  
I. Fazekas ◽  
T. Buday ◽  
...  

According to the challenge of the reduction of greenhouse gases, the structure of energy production should be revised and the increase of the ratio of alternative energy sources can be a possible solution. Redistribution of the energy production to the private houses is an alternative of large power stations at least in a partial manner. Especially, the utilization of solar energy represents a real possibility to exploit the natural resources in a sustainable way. In this study we attempted to survey the roofs of the buildings with an automatic method as the potential surfaces of placing solar panels. A LiDAR survey was carried out with 12 points/m2 density as the most up-to-date method of surveys and automatic data collection techniques. Our primary goal was to extract the buildings with special regard to the roofs in a 1 km2 study area, in Debrecen. The 3D point cloud generated by the LiDAR was processed with MicroStation TerraScan software, using semi-automatic algorithms. Slopes, aspects and annual solar radiation income of roof planes were determined in ArcGIS10 environment from the digital surface model. Results showed that, generally, the outcome can be regarded as a roof cadaster of the buildings with correct geometry. Calculated solar radiation values revealed those roof planes where the investment for photovoltaic solar panels can be feasible.


Sign in / Sign up

Export Citation Format

Share Document