scholarly journals Design and Development of an Online Smart Monitoring and Diagnosis System for Photovoltaic Distributed Generation

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8552
Author(s):  
Thiago A. Felipe ◽  
Fernando C. Melo ◽  
Luiz C. G. Freitas

In photovoltaic power plants, fault diagnosis tools are essential for ensuring a high energy yield. These tools should be capable of accurately identifying and quantifying the factors behind the various fault mechanisms commonly found in photovoltaic plants. Considering the aforementioned factors, this article proposes an online smart PV monitoring solution, which is capable of detecting malfunctions that arise from accidental and/or technical causes through the analysis of I-V curves, however, without the necessity to interrupt the operation of the system, thus reducing the maintenance cost. Accidental causes can lead to the reduction of energy productivity due to the excessive accumulation of dirt on the photovoltaic modules, partial shading and eventual errors that occur during its installation. On the other hand, technical causes can be attributed to faults found on the photovoltaic modules, which lead to gradual losses in their electric and material characteristics. Therefore, by using the electric characteristics supplied by the manufacturer of the installed modules, the I-V and P-V curves of the operational photovoltaic strings were obtained in real time, compared to the respective theoretical curves obtained through mathematical modeling. In order to validate the proposed online monitoring system and its potential for predictive maintenance application, a field experimentation was mounted in a 93.8 kWp photovoltaic system.

2020 ◽  
Vol 12 (22) ◽  
pp. 9607
Author(s):  
Qamar Navid ◽  
Ahmed Hassan ◽  
Abbas Ahmad Fardoun ◽  
Rashad Ramzan

The share of photovoltaic (PV) power generation in the energy mix is increasing at a rapid pace with dramatically increasing capacity addition through utility-scale PV power plants globally. As PV plants are forecasted to be a major energy generator in the future, their reliable operation remains of primary concern due to a possibility of faults in a tremendously huge number of PV panels involved in power generation in larger plants. The precise detection of nature and the location of the faults along with a prompt remedial mechanism is deemed crucial for smoother power plant operation. The existing fault diagnostic methodologies based on thermal imaging of the panels as well as electrical parameters through inverter possess certain limitations. The current article deals with a novel fault diagnostic technique based on PV panel electrical parameters and junction temperatures that can precisely locate and categorize the faults. The proposed scheme has been tested on a 1.6 kW photovoltaic system for short circuit, open circuit, grounding, and partial shading faults. The proposed method showed improved accuracy compared to thermal imaging on panel scale fault detection, offering a possibility to adapt to the PV plant scale.


2016 ◽  
pp. 143-150
Author(s):  
Csaba Pintér

The increasing demand for energy worldwide and the resulting environmental impacts of fossil fuels forced many countries to turn to renewable energy resources as a clean and sustainable alternative. More than a third of Europe’s binding renewable energy source target of 20% by 2020 will come from solid biomass for electricity and heating according to the National Renewable Energy Action Plans submitted by member states of the European Union (EU) to the European Commission. To achieve this goal long-term yield studies in renewable energy plants are important to determine mean annual biomass and energy yield, and CO2 emission. Field experiments worldwide and also in Europe have demonstrated that Miscanthus, a fast-growing C4 rhizomatous grass can produce some of the highest biomass and energy yield per hectare of all potential energy plants. Miscanthus is a plant that originates from the southern slopes of the Himalayas. It was bred for the Hungarian climatic conditions in 2006 under the name of Miscanthus sinensis ‘Tatai’ (MsT). The species has high frost and drought tolerance and high energy value. This is why there is growing demand for the biomass (lignocellulose) produced by growing this plant. The biomass, produced from the high yield energy reed, can be transported to power plants in large quantities, in forms of bales. Its household consumption is not yet significant. This study presents the external features, characteristics, propagation and plantation process of MsT energy reed. The study also demonstrates the harvest technology of the species worked out between 2009–2012 in Tata, Hungary and the options of supplying to biomass power stations.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ali Hajiah ◽  
Tamer Khatib ◽  
K. Sopian ◽  
M. Sebzali

This paper presents an assessment of the electricity generated by photovoltaic (PV) grid-connected systems in Kuwait. Three years of meteorological data are provided for two main sites in Kuwait, namely, Al-Wafra and Mutla. These data and a PV grid-connected system mathematical model are used to assist a 100 kWp grid-connected PV system proposed for both sites. The proposed systems show high energy productivity whereas the annual capacity factors for Mutla and Al-Wafra are 22.25% and 21.6%, respectively. Meanwhile the annual yield factors for Mutla and Al-Wafra are 1861 kWh/kWp/year and 1922.7 kWh/kWp/year, respectively. On the other hand the cost of the energy generated by both systems is about 0.1 USD/kWh which is very close to the price of the energy sold by the Ministry of Electricity and Water (MEW). Furthermore the invested money is recovered during the assumed life cycle time whereas the payback period for both sites is about 15 years. This work contains worthwhile technical information for those who are interested in PV technology investment in Kuwait.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ahmed S Kagilik ◽  
Abduraouf M Tawel

Many Libyan authorities proposed to investigate the possibility of utilizing a suitable terrain in Libya to add generation capacity of large-scale photovoltaic power plants. In this paper, the first grid-connected PV plant of 14 MWp which will be executed in Hoon city and supported by the Renewable Energy Authority of Libya (REAOL) is presented. To understand and improve the operational behavior of PV system, a comprehensive study including the plant design and detailed performance analysis under a local climate conditions is performed. Using polycrystalline silicon technology, the first year energy yield is estimated and the monthly system output for this plant is calculated. The performance ratio and various power losses (temperature, irradiance, power electronics, interconnection, etc.) are determined. The PV system supplied 24964 MWh to the grid during the first year giving an average annual overall yield factor 1783 kWh/kWp and average annual performance ratio of the system of 76.9%.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ahmed S Kagilik ◽  
Abduraouf M Tawel

Many Libyan authorities proposed to investigate the possibility of utilizing a suitable terrain in Libya to add generation capacity of large-scale photovoltaic power plants. In this paper, the first grid-connected PV plant of 14 MWp which will be executed in Hoon city and supported by the Renewable Energy Authority of Libya (REAOL) is presented. To understand and improve the operational behavior of PV system, a comprehensive study including the plant design and detailed performance analysis under a local climate conditions is performed. Using polycrystalline silicon technology, the first year energy yield is estimated and the monthly system output for this plant is calculated. The performance ratio and various power losses (temperature, irradiance, power electronics, interconnection, etc.) are determined. The PV system supplied 24964 MWh to the grid during the first year giving an average annual overall yield factor 1783 kWh/kWp and average annual performance ratio of the system of 76.9%.


Author(s):  
Baraa Mahmoud Dawoud ◽  
Siow Chun Lim

<span>Malaysia is rapidly expanding the generation capacity of solar power through large scale solar (LSS) projects with the aim to achieve 20% renewable energy mix by 2025. This has motivated many solar industry players to explore the usage of solar PV with single axis tracker (SAT) system. However, many are still hesitant due to the lack of understanding on the comparative performance between fixed mounted solar PV with solar PV with SAT system. This paper aims to provide a comparative analysis on the performance of both systems. Simulation using PVSyst 6.83 was performed in five potential LSS sites spread across Peninsular Malaysia in Perlis, Kelantan, Pahang, Selangor and Johor with the same installed capacity of 10.32MWp. The energy yield and capacity factor for 21 years were simulated. On the average, it was found that SAT outperforms fixed mounted solar PV system by 15.08% based on their performance on their first year operation. </span>


Author(s):  
N. Ravichandran ◽  
N. Ravichandran ◽  
B. Panneerselvam

AbstractFloating photovoltaic system for reservoirs is a recent innovative technology that is highly advantageous in reducing evaporation while generating solar power. In addition, the integration of floating photovoltaic systems with the existing hydroelectric power plants will increase renewable power production. The present study aims to assess the electrical performance of floating photovoltaic systems in major reservoirs with existing hydroelectric power plants in India. The reservoirs with large water surface area were selected for the study, and a model floating photovoltaic system with a 5-MW capacity was designed for the selected reservoirs. The numerical analysis showed that installing floating photovoltaic systems will result in an annual energy yield of 160 GWh. Further, the systems also save 1.40 million cubic meters of water per day and also help in generating additional energy of 514.80 MWh/day from the saved water through its integration with hydroelectric power plants. A single-axis tracking mechanism to the floating photovoltaic systems will increase the annual energy generation by 11%. The detailed cost analysis and carbon emission analysis were also carried out. The results indicate that the tracking mechanisms increase the total installation cost of the systems. The annual carbon emission reduction from the floating photovoltaic systems accounts for about 3.30 million tons of CO2. The obtained results highlight the suitability of this innovative technology for installation in Indian reservoirs and its effectiveness in reducing evaporation and carbon emission. Graphic abstract


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Chin-Yi Tsai ◽  
Chin-Yao Tsai

In this work, tandem amorphous/microcrystalline silicon thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability were successfully designed and developed. Several key technologies of passivation, transparent-conducting-oxide films, and cell and segment laser scribing were researched, developed, and introduced into the production line to enhance the performance of these low-voltage modules. A 900 kWp photovoltaic system with these low-voltage panels was installed and its performance ratio has been simulated and projected to be 92.1%, which is 20% more than the crystalline silicon and CdTe counterparts.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1860 ◽  
Author(s):  
J. Teo ◽  
Rodney Tan ◽  
V. Mok ◽  
Vigna Ramachandaramurthy ◽  
ChiaKwang Tan

A photovoltaic system is highly susceptible to partial shading. Based on the functionality of a photovoltaic system that relies on solar irradiance to generate electrical power, it is tacitly assumed that the maximum power of a partially shaded photovoltaic system always decreases as the shading heaviness increases. However, the literature has reported that this might not be the case. The maximum power of a partially shaded photovoltaic system under a fixed configuration and partial shading pattern can be highly insusceptible to shading heaviness when a certain critical point is met. This paper presents an investigation of the impact of partial shading and the critical point that reduce the susceptibility of shading heaviness. Photovoltaic string formed by series-connected photovoltaic modules is used in this research. The investigation of the P-V characteristic curve under different numbers of shaded modules and shading heaviness suggests that the photovoltaic string becomes insusceptible to shading heaviness when the shaded modules irradiance reaches a certain critical point. The critical point can vary based on the number of the shaded modules. The formulated equation in this research contributes to determining the critical point for different photovoltaic string sizes and numbers of shaded modules in the photovoltaic string.


Sign in / Sign up

Export Citation Format

Share Document