scholarly journals Numerical Modelling of Various Aspects of Pipe Pile Static Load Test

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8598
Author(s):  
Michał Baca ◽  
Alexander L. Ivannikov ◽  
Jarosław Rybak

Due to the development of dedicated software and the computing capabilities of modern computers, the application of numerical methods to analyse more complex geotechnical problems is becoming increasingly common. However, there are still some areas which, due to the lack of unambiguous solutions, require a more thorough examination, e.g., the numerical simulations of displacement pile behaviour in soil. Difficulties in obtaining the convergence of simulations with the results of static load tests are mainly caused by problems with proper modelling of the pile installation process. Based on the numerical models developed so far, a new process of static load test modelling has been proposed, which includes the influence of pile installation on the soil in its vicinity and modelling of contact between steel pile and the soil. Although the presented method is not new, this is relevant and important for practitioners that may want to improve the design of displacement piles. The results of the numerical calculations were verified by comparing them with the results of pipe pile field tests carried out in a natural scale on the test field in Southern Poland.

2014 ◽  
Vol 22 (4) ◽  
pp. 1-10 ◽  
Author(s):  
Michal Hoľko ◽  
Jakub Stacho

Abstract The article deals with numerical analyses of a Continuous Flight Auger (CFA) pile. The analyses include a comparison of calculated and measured load-settlement curves as well as a comparison of the load distribution over a pile's length. The numerical analyses were executed using two types of software, i.e., Ansys and Plaxis, which are based on FEM calculations. Both types of software are different from each other in the way they create numerical models, model the interface between the pile and soil, and use constitutive material models. The analyses have been prepared in the form of a parametric study, where the method of modelling the interface and the material models of the soil are compared and analysed. Our analyses show that both types of software permit the modelling of pile foundations. The Plaxis software uses advanced material models as well as the modelling of the impact of groundwater or overconsolidation. The load-settlement curve calculated using Plaxis is equal to the results of a static load test with a more than 95 % degree of accuracy. In comparison, the load-settlement curve calculated using Ansys allows for the obtaining of only an approximate estimate, but the software allows for the common modelling of large structure systems together with a foundation system.


2018 ◽  
Vol 251 ◽  
pp. 04038 ◽  
Author(s):  
Michal Baca ◽  
Jaroslaw Rybak

Presented laboratory testing program of tubular steel piles is a part of a bigger research program which contained static load tests in full scale and numerical simulations of conducted research. The main goal of the research is to compare static load tests with different working conditions of a shaft. The presented small scale model tests are the last part of the research. The paper contains the testing methodology description and first results of model pile axial loading. The static load tests in a small laboratory scale were conducted in a container filled with uniformly compacted medium sand (MSa). The first results of the investigation are presented in this paper, with the comparison of two pile capacities obtained for different roughness of the pile shaft (skin friction). The results are presented as load-displacement curves obtained by means of the Brinch-Hansen 80% method.


2013 ◽  
Vol 353-356 ◽  
pp. 533-539 ◽  
Author(s):  
Wen Xu ◽  
Yu Bin Hou

Through field static load test and pile shaft axial force test, field testing study is conducted on bearing behavior of NAKS-construction-method belled large-diameter PHC pipe pile; besides, the test result is compared with that of hammering-method PHC pipe pile and bored pile with same pile length and diameter under the same site condition. The result shows that the ultimate bearing capacity of NAKS-construction-method belled large-diameter PHC pipe pile is slightly inferior to hammering-method PHC pipe pile but obviously superior to that of bored pile. Compared with traditional hammering-method pipe pile, the pile side resistance of NAKS-construction-method belled pipe pile is smaller; however, the higher toe resistance will give better play to bearing capacity of bearing stratum of pile toe; moreover, it is found that under the action of ultimate load and failure load, the maximum settlement and final settlement of NAKS-construction-method belled pipe pile tip are obviously lower than that of other test piles, which is conductive to lessening foundation settlement of upper structure.


2015 ◽  
Vol 10 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Tarvo Mill ◽  
Artu Ellmann ◽  
Martti Kiisa ◽  
Juhan Idnurm ◽  
Siim Idnurm ◽  
...  

Terrestrial laser scanning technology has developed rapidly in recent years and has been used in various applications but mainly in the surveying of different buildings and historical monuments. The use for terrestrial laser scanning data for deformation monitoring has earlier been tested although conventional surveying technologies are still more preferred. Since terrestrial laser scanners are capable of acquiring a large amount of highly detailed geometrical data from a surface it is of interest to study the metrological advantages of the terrestrial laser scanning technology for deformation monitoring of structures. The main intention of this study is to test the applicability of terrestrial laser scanning technology for determining range and spatial distribution of deformations during bridge load tests. The study presents results of deformation monitoring proceeded during a unique bridge load test. A special monitoring methodology was developed and applied at a static load test of a reinforced concrete cantilever bridge built in 1953. Static loads with the max force of up to 1961 kN (200 t) were applied onto an area of 12 m² in the central part of one of the main beams; the collapse of the bridge was expected due to such an extreme load. Although the study identified occurrence of many cracks in the main beams and significant vertical deformations, both deflection (–4.2 cm) and rising (+2.5 cm), the bridge did not collapse. The terrestrial laser scanning monitoring results were verified by high-precision levelling. The study results confirmed that the TLS accuracy can reach ±2.8 mm at 95% confidence level.


2018 ◽  
Vol 40 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Zygmunt Meyer ◽  
Krzysztof Żarkiewicz

Abstract This article shows the mathematical method to determine the lateral stress on the shaft and toe resistance of pile using the new approach. The method was originally invented by Meyer and Kowalow for the static load test. The approximation curve was used for the estimation of both settlement curve and toe resistance curve of the pile. The load applied at the head of the pile is balanced by the sum of two components: the resistance under the toe of the pile and the skin friction. Therefore, the settlement curve is compilation of two factors: the skin friction curve and the resistance under toe curve. The analysis was based on the verification of the methods using laboratory experiments, that is, static load tests. The results of the research allowed to determine the relationship between parameters of the Meyer–Kowalow curve. On the basis of the relationships, it was possible to determine the skin friction and the toe resistance of the pile. Mathematical analysis of curve parameters allowed to determine the influence of the toe resistance on the settlement.


Author(s):  
Daehyeon Kim ◽  
Kyemoon Baek ◽  
Kyungho Park

This study aims to improve the shaft with hexagon joints to be a type not requiring welding or bolts in the static load test . In order to evaluate the bearing capacity of helical piles, two sites were selected to conduct pile installation for the field test and the pile load test. For the pile load test, the static pile load test and the dynamic pile load test were carried out, and torque was measured during pile installation for the field test to compare and analyze expected bearing capacity and thus assess the feasibility of the method for estimating the bearing capacity. The field pile load test revealed the bearing capacity of the gravity grout pile was the same or greater than 600kN in the static pile load test in accordance with AC 358 Code. The non-grout pile showed the bearing capacity the same or smaller than 600kN, suggesting gravity grouting is required. Moreover, the field pile load test was used to establish the bearing capacity equation considering the torque in pile installation, and a small number of samples were used to establish the equation which can be used as a basic data.


2012 ◽  
Vol 256-259 ◽  
pp. 410-415 ◽  
Author(s):  
Kai Cheng Huo ◽  
Xu Qin ◽  
Huan Huan Yue

Combined with the uplift static load test of large-diameter steel pipe pile in Xiangshan Port bridge of Ningbo, make analysis of Q-s curve and s-lgt curve, axial force distribution curve and unit shaft resistance, revealing the uplift characteristic of the steel pipe pile. The analyses show that the uplift steel pipe pile is pure friction pile, the uplift load is decreased downward through the axial force of pile body, the shaft resistance gradually plays from top to bottom and play completely in the upper soil. Moreover, it has used hyperbolic model to fit the measured Q-s curve by Matlab software, and the fitting precision is high. Then make the hyperbolic model non-dimensional, and attempt to predict ultimate bearing capacity using the maximum curvature point of the non-dimensional hyperbolic model, to get some mechanical characteristic.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1890 ◽  
Author(s):  
Daehyeon Kim ◽  
Kyemoon Baek ◽  
Kyungho Park

This study aims to improve shafts with hexagonal joints so that they will not require welding or bolts in static load tests. In order to evaluate the bearing capacity of helical piles, two sites were selected to conduct pile installation for the field test and the pile load test. For the pile load test, a static pile load test and a dynamic pile load test were carried out, and torque was measured during pile installation in a field test to compare and analyze the expected bearing capacity and thus assess the feasibility of the method for estimating the bearing capacity. The field pile load test revealed that the bearing capacity of the gravity grout pile was the same or greater than 600 kN in the static pile load test in accordance with the AC 358 code. The non-grout pile showed a bearing capacity that was the same or smaller than 600 kN, suggesting that gravity grouting is required. Moreover, the field pile load test was used to establish the bearing capacity equation considering the torque in the pile installation, and a small number of samples were used to establish the equation, which can be used as basic data.


2020 ◽  
Author(s):  
Fei Han ◽  
Eshan Ganju ◽  
Rodrigo Salgado ◽  
Monica Prezzi

2017 ◽  
Vol 39 (3) ◽  
pp. 17-25 ◽  
Author(s):  
Adam Krasiński ◽  
Mateusz Wiszniewski

Abstract Static load tests on foundation piles are generally carried out in order to determine load – the displacement characteristic of the pile head. For standard (basic) engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28–30 November 2016.


Sign in / Sign up

Export Citation Format

Share Document